36,217 research outputs found

    Randomized Optimal Consensus of Multi-agent Systems

    Get PDF
    In this paper, we formulate and solve a randomized optimal consensus problem for multi-agent systems with stochastically time-varying interconnection topology. The considered multi-agent system with a simple randomized iterating rule achieves an almost sure consensus meanwhile solving the optimization problem \min_{z\in \mathds{R}^d}\ \sum_{i=1}^n f_i(z), in which the optimal solution set of objective function fif_i can only be observed by agent ii itself. At each time step, simply determined by a Bernoulli trial, each agent independently and randomly chooses either taking an average among its neighbor set, or projecting onto the optimal solution set of its own optimization component. Both directed and bidirectional communication graphs are studied. Connectivity conditions are proposed to guarantee an optimal consensus almost surely with proper convexity and intersection assumptions. The convergence analysis is carried out using convex analysis. We compare the randomized algorithm with the deterministic one via a numerical example. The results illustrate that a group of autonomous agents can reach an optimal opinion by each node simply making a randomized trade-off between following its neighbors or sticking to its own opinion at each time step

    Randomized Constraints Consensus for Distributed Robust Linear Programming

    Get PDF
    In this paper we consider a network of processors aiming at cooperatively solving linear programming problems subject to uncertainty. Each node only knows a common cost function and its local uncertain constraint set. We propose a randomized, distributed algorithm working under time-varying, asynchronous and directed communication topology. The algorithm is based on a local computation and communication paradigm. At each communication round, nodes perform two updates: (i) a verification in which they check-in a randomized setup-the robust feasibility (and hence optimality) of the candidate optimal point, and (ii) an optimization step in which they exchange their candidate bases (minimal sets of active constraints) with neighbors and locally solve an optimization problem whose constraint set includes: a sampled constraint violating the candidate optimal point (if it exists), agent's current basis and the collection of neighbor's basis. As main result, we show that if a processor successfully performs the verification step for a sufficient number of communication rounds, it can stop the algorithm since a consensus has been reached. The common solution is-with high confidence-feasible (and hence optimal) for the entire set of uncertainty except a subset having arbitrary small probability measure. We show the effectiveness of the proposed distributed algorithm on a multi-core platform in which the nodes communicate asynchronously.Comment: Accepted for publication in the 20th World Congress of the International Federation of Automatic Control (IFAC

    Distributed Optimization: Convergence Conditions from a Dynamical System Perspective

    Full text link
    This paper explores the fundamental properties of distributed minimization of a sum of functions with each function only known to one node, and a pre-specified level of node knowledge and computational capacity. We define the optimization information each node receives from its objective function, the neighboring information each node receives from its neighbors, and the computational capacity each node can take advantage of in controlling its state. It is proven that there exist a neighboring information way and a control law that guarantee global optimal consensus if and only if the solution sets of the local objective functions admit a nonempty intersection set for fixed strongly connected graphs. Then we show that for any tolerated error, we can find a control law that guarantees global optimal consensus within this error for fixed, bidirectional, and connected graphs under mild conditions. For time-varying graphs, we show that optimal consensus can always be achieved as long as the graph is uniformly jointly strongly connected and the nonempty intersection condition holds. The results illustrate that nonempty intersection for the local optimal solution sets is a critical condition for successful distributed optimization for a large class of algorithms

    Distributed Partitioned Big-Data Optimization via Asynchronous Dual Decomposition

    Full text link
    In this paper we consider a novel partitioned framework for distributed optimization in peer-to-peer networks. In several important applications the agents of a network have to solve an optimization problem with two key features: (i) the dimension of the decision variable depends on the network size, and (ii) cost function and constraints have a sparsity structure related to the communication graph. For this class of problems a straightforward application of existing consensus methods would show two inefficiencies: poor scalability and redundancy of shared information. We propose an asynchronous distributed algorithm, based on dual decomposition and coordinate methods, to solve partitioned optimization problems. We show that, by exploiting the problem structure, the solution can be partitioned among the nodes, so that each node just stores a local copy of a portion of the decision variable (rather than a copy of the entire decision vector) and solves a small-scale local problem
    • …
    corecore