24 research outputs found

    Processing Succinct Matrices and Vectors

    Full text link
    We study the complexity of algorithmic problems for matrices that are represented by multi-terminal decision diagrams (MTDD). These are a variant of ordered decision diagrams, where the terminal nodes are labeled with arbitrary elements of a semiring (instead of 0 and 1). A simple example shows that the product of two MTDD-represented matrices cannot be represented by an MTDD of polynomial size. To overcome this deficiency, we extended MTDDs to MTDD_+ by allowing componentwise symbolic addition of variables (of the same dimension) in rules. It is shown that accessing an entry, equality checking, matrix multiplication, and other basic matrix operations can be solved in polynomial time for MTDD_+-represented matrices. On the other hand, testing whether the determinant of a MTDD-represented matrix vanishes PSPACE$-complete, and the same problem is NP-complete for MTDD_+-represented diagonal matrices. Computing a specific entry in a product of MTDD-represented matrices is #P-complete.Comment: An extended abstract of this paper will appear in the Proceedings of CSR 201

    Model Interpretability through the Lens of Computational Complexity

    Get PDF
    In spite of several claims stating that some models are more interpretable than others -- e.g., "linear models are more interpretable than deep neural networks" -- we still lack a principled notion of interpretability to formally compare among different classes of models. We make a step towards such a notion by studying whether folklore interpretability claims have a correlate in terms of computational complexity theory. We focus on local post-hoc explainability queries that, intuitively, attempt to answer why individual inputs are classified in a certain way by a given model. In a nutshell, we say that a class C1\mathcal{C}_1 of models is more interpretable than another class C2\mathcal{C}_2, if the computational complexity of answering post-hoc queries for models in C2\mathcal{C}_2 is higher than for those in C1\mathcal{C}_1. We prove that this notion provides a good theoretical counterpart to current beliefs on the interpretability of models; in particular, we show that under our definition and assuming standard complexity-theoretical assumptions (such as P\neqNP), both linear and tree-based models are strictly more interpretable than neural networks. Our complexity analysis, however, does not provide a clear-cut difference between linear and tree-based models, as we obtain different results depending on the particular post-hoc explanations considered. Finally, by applying a finer complexity analysis based on parameterized complexity, we are able to prove a theoretical result suggesting that shallow neural networks are more interpretable than deeper ones.Comment: 36 pages, including 9 pages of main text. This is the arXiv version of the NeurIPS'2020 paper. Except from minor differences that could be introduced by the publisher, the only difference should be the addition of the appendix, which contains all the proofs that do not appear in the main tex

    Hard Mathematical Problems in Cryptography and Coding Theory

    Get PDF
    In this thesis, we are concerned with certain interesting computationally hard problems and the complexities of their associated algorithms. All of these problems share a common feature in that they all arise from, or have applications to, cryptography, or the theory of error correcting codes. Each chapter in the thesis is based on a stand-alone paper which attacks a particular hard problem. The problems and the techniques employed in attacking them are described in detail. The first problem concerns integer factorization: given a positive integer NN. the problem is to find the unique prime factors of NN. This problem, which was historically of only academic interest to number theorists, has in recent decades assumed a central importance in public-key cryptography. We propose a method for factorizing a given integer using a graph-theoretic algorithm employing Binary Decision Diagrams (BDD). The second problem that we consider is related to the classification of certain naturally arising classes of error correcting codes, called self-dual additive codes over the finite field of four elements, GF(4)GF(4). We address the problem of classifying self-dual additive codes, determining their weight enumerators, and computing their minimum distance. There is a natural relation between self-dual additive codes over GF(4)GF(4) and graphs via isotropic systems. Utilizing the properties of the corresponding graphs, and again employing Binary Decision Diagrams (BDD) to compute the weight enumerators, we can obtain a theoretical speed up of the previously developed algorithm for the classification of these codes. The third problem that we investigate deals with one of the central issues in cryptography, which has historical origins in the theory of geometry of numbers, namely the shortest vector problem in lattices. One method which is used both in theory and practice to solve the shortest vector problem is by enumeration algorithms. Lattice enumeration is an exhaustive search whose goal is to find the shortest vector given a lattice basis as input. In our work, we focus on speeding up the lattice enumeration algorithm, and we propose two new ideas to this end. The shortest vector in a lattice can be written as s=v1b1+v2b2++vnbn{\bf s} = v_1{\bf b}_1+v_2{\bf b}_2+\ldots+v_n{\bf b}_n. where viZv_i \in \mathbb{Z} are integer coefficients and bi{\bf b}_i are the lattice basis vectors. We propose an enumeration algorithm, called hybrid enumeration, which is a greedy approach for computing a short interval of possible integer values for the coefficients viv_i of a shortest lattice vector. Second, we provide an algorithm for estimating the signs ++ or - of the coefficients v1,v2,,vnv_1,v_2,\ldots,v_n of a shortest vector s=i=1nvibi{\bf s}=\sum_{i=1}^{n} v_i{\bf b}_i. Both of these algorithms results in a reduction in the number of nodes in the search tree. Finally, the fourth problem that we deal with arises in the arithmetic of the class groups of imaginary quadratic fields. We follow the results of Soleng and Gillibert pertaining to the class numbers of some sequence of imaginary quadratic fields arising in the arithmetic of elliptic and hyperelliptic curves and compute a bound on the effective estimates for the orders of class groups of a family of imaginary quadratic number fields. That is, suppose f(n)f(n) is a sequence of positive numbers tending to infinity. Given any positive real number LL. an effective estimate is to find the smallest positive integer N=N(L)N = N(L) depending on LL such that f(n)>Lf(n) > L for all n>Nn > N. In other words, given a constant M>0M > 0. we find a value NN such that the order of the ideal class InI_n in the ring RnR_n (provided by the homomorphism in Soleng's paper) is greater than MM for any n>Nn>N. In summary, in this thesis we attack some hard problems in computer science arising from arithmetic, geometry of numbers, and coding theory, which have applications in the mathematical foundations of cryptography and error correcting codes

    Efficient local search for Pseudo Boolean Optimization

    Get PDF
    Algorithms and the Foundations of Software technolog

    New Data Structures and Algorithms for Logic Synthesis and Verification

    Get PDF
    The strong interaction between Electronic Design Automation (EDA) tools and Complementary Metal-Oxide Semiconductor (CMOS) technology contributed substantially to the advancement of modern digital electronics. The continuous downscaling of CMOS Field Effect Transistor (FET) dimensions enabled the semiconductor industry to fabricate digital systems with higher circuit density at reduced costs. To keep pace with technology, EDA tools are challenged to handle both digital designs with growing functionality and device models of increasing complexity. Nevertheless, whereas the downscaling of CMOS technology is requiring more complex physical design models, the logic abstraction of a transistor as a switch has not changed even with the introduction of 3D FinFET technology. As a consequence, modern EDA tools are fine tuned for CMOS technology and the underlying design methodologies are based on CMOS logic primitives, i.e., negative unate logic functions. While it is clear that CMOS logic primitives will be the ultimate building blocks for digital systems in the next ten years, no evidence is provided that CMOS logic primitives are also the optimal basis for EDA software. In EDA, the efficiency of methods and tools is measured by different metrics such as (i) the result quality, for example the performance of a digital circuit, (ii) the runtime and (iii) the memory footprint on the host computer. With the aim to optimize these metrics, the accordance to a specific logic model is no longer important. Indeed, the key to the success of an EDA technique is the expressive power of the logic primitives handling and solving the problem, which determines the capability to reach better metrics. In this thesis, we investigate new logic primitives for electronic design automation tools. We improve the efficiency of logic representation, manipulation and optimization tasks by taking advantage of majority and biconditional logic primitives. We develop synthesis tools exploiting the majority and biconditional expressiveness. Our tools show strong results as compared to state-of-the-art academic and commercial synthesis tools. Indeed, we produce the best results for several public benchmarks. On top of the enhanced synthesis power, our methods are the natural and native logic abstraction for circuit design in emerging nanotechnologies, where majority and biconditional logic are the primitive gates for physical implementation. We accelerate formal methods by (i) studying properties of logic circuits and (ii) developing new frameworks for logic reasoning engines. We prove non-trivial dualities for the property checking problem in logic circuits. Our findings enable sensible speed-ups in solving circuit satisfiability. We develop an alternative Boolean satisfiability framework based on majority functions. We prove that the general problem is still intractable but we show practical restrictions that can be solved efficiently. Finally, we focus on reversible logic where we propose a new equivalence checking approach. We exploit the invertibility of computation and the functionality of reversible gates in the formulation of the problem. This enables one order of magnitude speed up, as compared to the state-of-the-art solution. We argue that new approaches to solve EDA problems are necessary, as we have reached a point of technology where keeping pace with design goals is tougher than ever

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore