65 research outputs found

    Quantum Branching Programs and Space-Bounded Nonuniform Quantum Complexity

    Get PDF
    In this paper, the space complexity of nonuniform quantum computations is investigated. The model chosen for this are quantum branching programs, which provide a graphic description of sequential quantum algorithms. In the first part of the paper, simulations between quantum branching programs and nonuniform quantum Turing machines are presented which allow to transfer lower and upper bound results between the two models. In the second part of the paper, different variants of quantum OBDDs are compared with their deterministic and randomized counterparts. In the third part, quantum branching programs are considered where the performed unitary operation may depend on the result of a previous measurement. For this model a simulation of randomized OBDDs and exponential lower bounds are presented.Comment: 45 pages, 3 Postscript figures. Proofs rearranged, typos correcte

    The satisfiability problem for probabilistic ordered branching programs

    Get PDF
    We show that the satisfiability problem for bounded-error probabilistic ordered branching programs is \NP -complete. If the error is very small, however (more precisely, if the error is bounded by the reciprocal of the width of the branching program), then we have a polynomial-time algorithm for the satisfiability problem

    Satisfiable Tseitin Formulas Are Hard for Nondeterministic Read-Once Branching Programs

    Get PDF
    We consider satisfiable Tseitin formulas TS_{G,c} based on d-regular expanders G with the absolute value of the second largest eigenvalue less than d/3. We prove that any nondeterministic read-once branching program (1-NBP) representing TS_{G,c} has size 2^{Omega(n)}, where n is the number of vertices in G. It extends the recent result by Itsykson at el. [STACS 2017] from OBDD to 1-NBP. On the other hand it is easy to see that TS_{G,c} can be represented as a read-2 branching program (2-BP) of size O(n), as the negation of a nondeterministic read-once branching program (1-coNBP) of size O(n) and as a CNF formula of size O(n). Thus TS_{G,c} gives the best possible separations (up to a constant in the exponent) between 1-NBP and 2-BP, 1-NBP and 1-coNBP and between 1-NBP and CNF

    Prof. Dr. math. Ingo Wegener

    Get PDF
    corecore