6,055 research outputs found

    Efficient Diverse Ensemble for Discriminative Co-Tracking

    Full text link
    Ensemble discriminative tracking utilizes a committee of classifiers, to label data samples, which are in turn, used for retraining the tracker to localize the target using the collective knowledge of the committee. Committee members could vary in their features, memory update schemes, or training data, however, it is inevitable to have committee members that excessively agree because of large overlaps in their version space. To remove this redundancy and have an effective ensemble learning, it is critical for the committee to include consistent hypotheses that differ from one-another, covering the version space with minimum overlaps. In this study, we propose an online ensemble tracker that directly generates a diverse committee by generating an efficient set of artificial training. The artificial data is sampled from the empirical distribution of the samples taken from both target and background, whereas the process is governed by query-by-committee to shrink the overlap between classifiers. The experimental results demonstrate that the proposed scheme outperforms conventional ensemble trackers on public benchmarks.Comment: CVPR 2018 Submissio

    A Complete Characterization of Statistical Query Learning with Applications to Evolvability

    Get PDF
    Statistical query (SQ) learning model of Kearns (1993) is a natural restriction of the PAC learning model in which a learning algorithm is allowed to obtain estimates of statistical properties of the examples but cannot see the examples themselves. We describe a new and simple characterization of the query complexity of learning in the SQ learning model. Unlike the previously known bounds on SQ learning our characterization preserves the accuracy and the efficiency of learning. The preservation of accuracy implies that that our characterization gives the first characterization of SQ learning in the agnostic learning framework. The preservation of efficiency is achieved using a new boosting technique and allows us to derive a new approach to the design of evolutionary algorithms in Valiant's (2006) model of evolvability. We use this approach to demonstrate the existence of a large class of monotone evolutionary learning algorithms based on square loss performance estimation. These results differ significantly from the few known evolutionary algorithms and give evidence that evolvability in Valiant's model is a more versatile phenomenon than there had been previous reason to suspect.Comment: Simplified Lemma 3.8 and it's application

    Automatic Quality Estimation for ASR System Combination

    Get PDF
    Recognizer Output Voting Error Reduction (ROVER) has been widely used for system combination in automatic speech recognition (ASR). In order to select the most appropriate words to insert at each position in the output transcriptions, some ROVER extensions rely on critical information such as confidence scores and other ASR decoder features. This information, which is not always available, highly depends on the decoding process and sometimes tends to over estimate the real quality of the recognized words. In this paper we propose a novel variant of ROVER that takes advantage of ASR quality estimation (QE) for ranking the transcriptions at "segment level" instead of: i) relying on confidence scores, or ii) feeding ROVER with randomly ordered hypotheses. We first introduce an effective set of features to compensate for the absence of ASR decoder information. Then, we apply QE techniques to perform accurate hypothesis ranking at segment-level before starting the fusion process. The evaluation is carried out on two different tasks, in which we respectively combine hypotheses coming from independent ASR systems and multi-microphone recordings. In both tasks, it is assumed that the ASR decoder information is not available. The proposed approach significantly outperforms standard ROVER and it is competitive with two strong oracles that e xploit prior knowledge about the real quality of the hypotheses to be combined. Compared to standard ROVER, the abs olute WER improvements in the two evaluation scenarios range from 0.5% to 7.3%

    Sample Complexity Bounds on Differentially Private Learning via Communication Complexity

    Full text link
    In this work we analyze the sample complexity of classification by differentially private algorithms. Differential privacy is a strong and well-studied notion of privacy introduced by Dwork et al. (2006) that ensures that the output of an algorithm leaks little information about the data point provided by any of the participating individuals. Sample complexity of private PAC and agnostic learning was studied in a number of prior works starting with (Kasiviswanathan et al., 2008) but a number of basic questions still remain open, most notably whether learning with privacy requires more samples than learning without privacy. We show that the sample complexity of learning with (pure) differential privacy can be arbitrarily higher than the sample complexity of learning without the privacy constraint or the sample complexity of learning with approximate differential privacy. Our second contribution and the main tool is an equivalence between the sample complexity of (pure) differentially private learning of a concept class CC (or SCDP(C)SCDP(C)) and the randomized one-way communication complexity of the evaluation problem for concepts from CC. Using this equivalence we prove the following bounds: 1. SCDP(C)=Ω(LDim(C))SCDP(C) = \Omega(LDim(C)), where LDim(C)LDim(C) is the Littlestone's (1987) dimension characterizing the number of mistakes in the online-mistake-bound learning model. Known bounds on LDim(C)LDim(C) then imply that SCDP(C)SCDP(C) can be much higher than the VC-dimension of CC. 2. For any tt, there exists a class CC such that LDim(C)=2LDim(C)=2 but SCDP(C)tSCDP(C) \geq t. 3. For any tt, there exists a class CC such that the sample complexity of (pure) α\alpha-differentially private PAC learning is Ω(t/α)\Omega(t/\alpha) but the sample complexity of the relaxed (α,β)(\alpha,\beta)-differentially private PAC learning is O(log(1/β)/α)O(\log(1/\beta)/\alpha). This resolves an open problem of Beimel et al. (2013b).Comment: Extended abstract appears in Conference on Learning Theory (COLT) 201
    corecore