100 research outputs found

    MedGAN: Medical Image Translation using GANs

    Full text link
    Image-to-image translation is considered a new frontier in the field of medical image analysis, with numerous potential applications. However, a large portion of recent approaches offers individualized solutions based on specialized task-specific architectures or require refinement through non-end-to-end training. In this paper, we propose a new framework, named MedGAN, for medical image-to-image translation which operates on the image level in an end-to-end manner. MedGAN builds upon recent advances in the field of generative adversarial networks (GANs) by merging the adversarial framework with a new combination of non-adversarial losses. We utilize a discriminator network as a trainable feature extractor which penalizes the discrepancy between the translated medical images and the desired modalities. Moreover, style-transfer losses are utilized to match the textures and fine-structures of the desired target images to the translated images. Additionally, we present a new generator architecture, titled CasNet, which enhances the sharpness of the translated medical outputs through progressive refinement via encoder-decoder pairs. Without any application-specific modifications, we apply MedGAN on three different tasks: PET-CT translation, correction of MR motion artefacts and PET image denoising. Perceptual analysis by radiologists and quantitative evaluations illustrate that the MedGAN outperforms other existing translation approaches.Comment: 16 pages, 8 figure

    Machine Learning Methods To Identify Hidden Phenotypes In The Electronic Health Record

    Get PDF
    The widespread adoption of Electronic Health Records (EHRs) means an unprecedented amount of patient treatment and outcome data is available to researchers. Research is a tertiary priority in the EHR, where the priorities are patient care and billing. Because of this, the data is not standardized or formatted in a manner easily adapted to machine learning approaches. Data may be missing for a large variety of reasons ranging from individual input styles to differences in clinical decision making, for example, which lab tests to issue. Few patients are annotated at a research quality, limiting sample size and presenting a moving gold standard. Patient progression over time is key to understanding many diseases but many machine learning algorithms require a snapshot, at a single time point, to create a usable vector form. In this dissertation, we develop new machine learning methods and computational workflows to extract hidden phenotypes from the Electronic Health Record (EHR). In Part 1, we use a semi-supervised deep learning approach to compensate for the low number of research quality labels present in the EHR. In Part 2, we examine and provide recommendations for characterizing and managing the large amount of missing data inherent to EHR data. In Part 3, we present an adversarial approach to generate synthetic data that closely resembles the original data while protecting subject privacy. We also introduce a workflow to enable reproducible research even when data cannot be shared. In Part 4, we introduce a novel strategy to first extract sequential data from the EHR and then demonstrate the ability to model these sequences with deep learning

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Computational Approaches to Explainable Artificial Intelligence:Advances in Theory, Applications and Trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Multi-stream Longitudinal Data Analysis using Deep Learning

    Get PDF
    Longitudinal healthcare data encompasses all tasks where patients information are collected at multiple follow-up times. Analyzing this data is critical in addressing many real world problems in healthcare such as disease prediction and prevention. In this thesis, technical challenges in analyzing longitudinal administrative claims data are addressed and novel deep learning based models are proposed for multi-stream data analysis and disease prediction tasks. These algorithms and frameworks are assessed mainly on substance use disorders prediction tasks and specifically designed to tackled these disorders. Substance use disorder is a public health crisis costing the US an estimated $740 billion annually in healthcare, lost workplace productivity, and crime. Early identification and engagement of individuals at risk of developing a substance use disorder is a critical unmet need in healthcare which can be achieved by producing automatic artificial intelligence based tools trained using big healthcare data. In fact, healthcare data can be harnessed together with artificial intelligence and machine learning to advance our understanding of factors that increase the propensity for developing different diseases as well as those that aid in the treatment of these disorders. Here in, a disease prediction framework is first proposed based on recurrent neural networks. This framework includes three components: 1) data pre-processing, 2) disease prediction using long short term memory models, and 3) hypothesis exploration by varying the models and the inputs. This framework is assessed using two use cases: substance use disorder prediction and mild cognitive impairment prediction. Experimental results show that this proposed model can efficiently analyze patients\u27 data and creates efficient disease prediction tools. Second, the limitationsof current deep learning models including long short term memory models in claimsdata analysis are detected and addressed, and a novel model based on the transformer models is proposed. In fact, leveraging the real-world longitudinal claims data, a novel multi-stream transformer model is proposed for predicting opioid use disorder as an important case of substance use disorders. This model is designed to simultaneously analyze multiple types of data streams, such as medications, diagnoses, procedures and demographics, by attending to segments within and across these data streams. The proposed model tested on the IBM MarketScan data showed significantly better performance than the traditional models and recently developed deep learning models

    Opportunities and obstacles for deep learning in biology and medicine

    Get PDF
    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network\u27s prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine
    corecore