3,926 research outputs found

    Efficient Interpolation in the Guruswami-Sudan Algorithm

    Full text link
    A novel algorithm is proposed for the interpolation step of the Guruswami-Sudan list decoding algorithm. The proposed method is based on the binary exponentiation algorithm, and can be considered as an extension of the Lee-O'Sullivan algorithm. The algorithm is shown to achieve both asymptotical and practical performance gain compared to the case of iterative interpolation algorithm. Further complexity reduction is achieved by integrating the proposed method with re-encoding. The key contribution of the paper, which enables the complexity reduction, is a novel randomized ideal multiplication algorithm.Comment: Submitted to IEEE Transactions on Information Theor

    Using Differential Evolution for the Graph Coloring

    Full text link
    Differential evolution was developed for reliable and versatile function optimization. It has also become interesting for other domains because of its ease to use. In this paper, we posed the question of whether differential evolution can also be used by solving of the combinatorial optimization problems, and in particular, for the graph coloring problem. Therefore, a hybrid self-adaptive differential evolution algorithm for graph coloring was proposed that is comparable with the best heuristics for graph coloring today, i.e. Tabucol of Hertz and de Werra and the hybrid evolutionary algorithm of Galinier and Hao. We have focused on the graph 3-coloring. Therefore, the evolutionary algorithm with method SAW of Eiben et al., which achieved excellent results for this kind of graphs, was also incorporated into this study. The extensive experiments show that the differential evolution could become a competitive tool for the solving of graph coloring problem in the future

    Lossy Compression with Near-uniform Encoder Outputs

    Full text link
    It is well known that lossless compression of a discrete memoryless source with near-uniform encoder output is possible at a rate above its entropy if and only if the encoder is randomized. This work focuses on deriving conditions for near-uniform encoder output(s) in the Wyner-Ziv and the distributed lossy compression problems. We show that in the Wyner-Ziv problem, near-uniform encoder output and operation close to the WZ-rate limit is simultaneously possible, whereas in the distributed lossy compression problem, jointly near-uniform outputs is achievable in the interior of the distributed lossy compression rate region if the sources share non-trivial G\'{a}cs-K\"{o}rner common information.Comment: Submitted to the 2016 IEEE International Symposium on Information Theory (11 Pages, 3 Figures
    • …
    corecore