919 research outputs found

    Distributed Algorithms for Maximizing the Lifetime of Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are emerging as a key enabling technology for applications domains such as military, homeland security, and environment. However, a major constraint of these sensors is their limited battery. In this dissertation we examine the problem of maximizing the duration of time for which the network meets its coverage objective. Since these networks are very dense, only a subset of sensors need to be in sense or on mode at any given time to meet the coverage objective, while others can go into a power conserving sleep mode. This active set of sensors is known as a cover. The lifetime of the network can be extended by shuffling the cover set over time. In this dissertation, we introduce the concept of a local lifetime dependency graph consisting of the cover sets as nodes with any two nodes connected if the corresponding covers intersect, to capture the interdependencies among the covers. We present heuristics based on some simple properties of this graph and show how they improve over existing algorithms. We also present heuristics based on other properties of this graph, new models for dealing with the solution space and a generalization of our approach to other graph problems

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements
    • …
    corecore