152 research outputs found

    Understanding regulatory mechanisms underlying stem cells helps to identify cancer biomarkers

    Get PDF
    Detection of biomarker genes play a crucial role in disease detection and treatment. Bioinformatics offers a variety of approaches for identification of biomarker genes which play key roles in complex diseases. These computational approaches enhance the insight derived from experiments and reduce the efforts of biologists and experimentalists. This is essentially achieved through prioritizing a set of genes with certain attributes. In this thesis, we show that understanding the regulatory mechanisms underlying stem cells helps to identify cancer biomarkers. We got inspired by the regulatory mechanisms of the pluripotency network in mouse embryonic stem cells and formulated the problem where a set of master regulatory genes in regulatory networks is identified with two combinatorial optimization problems namely as minimum dominating set and minimum connected dominating set in weakly and strongly connected components. Then we applied the developed methods to regulatory cancer networks to identify disease-associated genes and anti-cancer drug targets in breast cancer and hepatocellular carcinoma. As not all the nodes in the solutions are critical, we developed a prioritization method to rank a set of candidate genes which are related to a certain disease based on systematic analysis of the genes that are differentially expressed in tumor and normal conditions. Moreover, we demonstrated that the topological features in regulatory networks surrounding differentially expressed genes are highly consistent in terms of using the output of several analysis tools. We compared two randomization strategies for TF-miRNA co-regulatory networks to infer significant network motifs underlying cellular identity. We showed that the edge-type conserving method surpasses the non-conserving method in terms of biological relevance and centrality overlap. We presented several web servers and software packages that are publicly available at no cost. The Cytoscape plugin of minimum connected dominating set identifies a set of key regulatory genes in a user provided regulatory network based on a heuristic approach. The ILP formulations of minimum dominating set and minimum connected dominating set return the optimal solutions for the aforementioned problems. Our source code is publicly available. The web servers TFmiR and TFmiR2 construct disease-, tissue-, process-specific networks for the sets of deregulated genes and miRNAs provided by a user. They highlight topological hotspots and offer detection of three- and four-node FFL motifs as a separate web service for both organisms mouse and human.Die Gendetektion von Biomarkern spielt eine wesentliche Rolle bei der Erkennung und Behandlung von Krankheiten. Die Bioinformatik bietet eine Vielzahl von AnsĂ€tzen zur Identifizierung von Biomarker-Genen, die bei komplizierten Erkrankungen eine SchlĂŒsselrolle spielen. Diese computerbasierten AnsĂ€tze verbessern die Erkenntnisse aus Experimenten und reduzieren den Aufwand von Biologen und Forschern. Dies wird hauptsĂ€chlich erreicht durch die Priorisierung einer Reihe von Genen mit bestimmten Attributen. In dieser Arbeit zeigen wir, dass die Identifizierung von Krebs-Biomarkern leichter gelingt, wenn wir die den Stammzellen zugrunde liegenden regulatorischen Mechanismen verstehen. Dazu angeregt wurden wir durch die regulatorischen Mechanismen des Pluripotenz-Netzwerks in embryonalen Maus-Stammzellen. Wir formulierten und haben das Problem der Identifizierung einer Reihe von Master-Regulator-Genen in regulatorischen Netzwerken mit zwei kombinatorischen Optimierungsproblemen, nĂ€mlich als minimal dominierende Menge und als minimal zusammenhĂ€ngende dominierende Menge in schwach und stark verbundenen Komponenten. Die entwickelten Methoden haben wir dann auf regulatorische Krebsnetzwerke angewandt, um krankheitsassoziierte Gene und Zielproteine fĂŒr Medikamenten gegen Brustkrebs und hepatozellulĂ€res Karzinom zu identifizieren. Im Hinblick darauf, dass nicht alle Knoten in den Lösungen wesentlich sind, haben wir basierend auf der systematischen Analyse von Genen, die unterschiedlich bei Tumor- und Normalbedingungen reagieren, eine Priorisierungsmethode entwickelt, um einen Satz von Kandidatengenen in eine Reihenfolge zu bringen, die einer bestimmten Krankheit zugeordnet sind. DarĂŒber hinaus haben wir gezeigt, dass die topologischen Eigenschaften in regulatorischen Netzwerken, die die deregulierte Gene umgeben, sehr einheitlich in Bezug auf den Einsatz verschiedener Analysewerkzeuge sind. Wir haben zwei Randomisierungsstrategien fĂŒr TF-miRNA-Co-regulatorische Netzwerke verglichen, um signifikante Netzwerkmotive herauszufinden, welche zellulĂ€rer IdentitĂ€t zugrunde liegen. Wir haben gezeigt, dass die Edge-Type-Erhaltungsmethode, die nicht-erhaltende Methode in Bezug auf biologische Relevanz und zentrale Überlappung ĂŒbertrifft. Wir haben mehrere Softwarepakete und Webserver vorgestellt, die allgemein und kostenlos zugĂ€nglich sind. Das Cytoscape Plugin fĂŒr die Identififizierung, der minimal verbundener dominierenden Mengen identifiziert einen Satz von regulatorischen SchlĂŒsselgenen in einem vom Benutzer bereitgestellten regulatorischen Netzwerk basierend auf einem heuristischen Ansatz. Die ILP Formulierungen, der minimal dominierenden Menge und der minimal verbundenen dominierenden Menge liefern die optimalen Lösungen fĂŒr die oben vorgenannten Probleme. Unser Quellcode hierfĂŒr ist öffentlich verfĂŒgbar. Die Webserver TFmiR und TFmiR2 erzeugen Krankheits-, Gewebe- und prozessspezifische Netzwerke fĂŒr die von einem Benutzer bereitgestellten deregulierten Gene und miRNAs. Außerdem verwenden die Webserver topologische Merkmale, um Hotspot-Knoten hervorzuheben und bieten die Erkennung von drei und vier Knoten FFL Motiven als separaten Web-Service fĂŒr beide Organismen, Maus und Mensch

    Gene autoregulation via intronic microRNAs and its functions

    Get PDF
    Background: MicroRNAs, post-transcriptional repressors of gene expression, play a pivotal role in gene regulatory networks. They are involved in core cellular processes and their dysregulation is associated to a broad range of human diseases. This paper focus on a minimal microRNA-mediated regulatory circuit, in which a protein-coding gene (host gene) is targeted by a microRNA located inside one of its introns. Results: Autoregulation via intronic microRNAs is widespread in the human regulatory network, as confirmed by our bioinformatic analysis, and can perform several regulatory tasks despite its simple topology. Our analysis, based on analytical calculations and simulations, indicates that this circuitry alters the dynamics of the host gene expression, can induce complex responses implementing adaptation and Weber's law, and efficiently filters fluctuations propagating from the upstream network to the host gene. A fine-tuning of the circuit parameters can optimize each of these functions. Interestingly, they are all related to gene expression homeostasis, in agreement with the increasing evidence suggesting a role of microRNA regulation in conferring robustness to biological processes. In addition to model analysis, we present a list of bioinformatically predicted candidate circuits in human for future experimental tests. Conclusions: The results presented here suggest a potentially relevant functional role for negative self-regulation via intronic microRNAs, in particular as a homeostatic control mechanism of gene expression. Moreover, the map of circuit functions in terms of experimentally measurable parameters, resulting from our analysis, can be a useful guideline for possible applications in synthetic biology.Comment: 29 pages and 7 figures in the main text, 18 pages of Supporting Informatio

    Delineating the \u3cem\u3eC. elegans\u3c/em\u3e MicroRNA Regulatory Network: A Dissertation

    Get PDF
    Metazoan genomes contain thousands of protein-coding and non-coding RNA genes, most of which are differentially expressed, i.e., at different locations, at different times during development, or in response to environmental signals. Differential gene expression is achieved through complex regulatory networks that are controlled in part by two types of trans-regulators: transcription factors (TFs) and microRNAs (miRNAs). TFs bind to cis-regulatory DNA elements that are often located in or near their target genes, while microRNAs hybridize to cis-regulatory RNA elements mostly located in the 3’ untranslated region (3’UTR) of their target mRNAs. My work in the Walhout lab has centered on understanding how these trans-regulators interact with each other in the context of gene regulatory networks to coordinate gene expression at the genome-scale level. Our model organism is the free-living nematode Caenorahbditis elegans, which possess approximately 950 predicted TFs and more than 100 miRNAs Whereas much attention has focused on finding the protein-coding target genes of both miRNAs and TFs, the transcriptional networks that regulate miRNA expression remain largely unexplored. To this end, we have embarked in the task of mapping the first genome-scale miRNA regulatory network. This network contains experimentally mapped transcriptional TF=\u3emiRNA interactions, as well as computationally predicted post-transcriptional miRNA=\u3eTF interactions. The work presented here, along with data reported by other groups, have revealed the existence of reciprocal regulation between these two types of regulators, as well as extensive coordination in the regulation of shared target genes. Our studies have also identified common mechanisms by which miRNAs and TFs function to control gene expression and have suggested an inherent difference in the network properties of both types of regulators. Reverse genetic approaches have been extensively used to delineate the biological function of protein-coding genes. For instance, genome-wide RNAi screens have revealed critical roles for TFs in C. elegans development and physiology. However, reverse genetic approaches have not been very insightful in the case of non-coding genes: A single null mutation does not result in an easily detectable phenotype for most C. elegans miRNA genes. To help delineate the biological function of miRNAs we sought to determine when and where they are expressed. Specifically, we generated a collection of transgenic C. elegans strains, each containing a miRNA promoter::gfp (Pmir::gfp) fusion construct. The particular pattern of expression of each miRNA gene should help to identify potential genetic interactors that exhibit similar expression patterns, and to design experiments to test the phenotypes of miRNA mutants

    Linking Proteomic and Transcriptional Data through the Interactome and Epigenome Reveals a Map of Oncogene-induced Signaling

    Get PDF
    Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting ÎČ-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets.National Science Foundation (U.S.) (DB1-0821391)National Institutes of Health (U.S.) (Grant U54-CA112967)National Institutes of Health (U.S.) (Grant R01-GM089903)National Institutes of Health (U.S.) (P30-ES002109

    Integrative computational approaches for studying stem cell differentiation and complex diseases

    Get PDF
    The biological functions of the molecular components (genes, proteins, miRNAs, siRNAs,..etc) of biological cells and mutations/perturbations thereof are tightly connected with cellular malfunctions and disease pathways. Moreover, these molecular elements interact with each other forming a complex interwoven regulatory machinery that governs, on one hand, regular cellular pathways, and on the other hand, their dysregulation or malfunction in pathological processes. Therefore, revealing these critical molecular interactions in complex living systems is being considered as one of the major goals of current systems biology. In this dissertation, we introduce practical computational approaches implemented as freely available software tools to integrate heterogeneous sources of large-scale genomic data and unravel the combinatorial regulatory interactions between different molecular elements. First, we present an automated GRN pipeline that constructs the genomic regulatory machinery of a cell from expression, sequencing, and annotation datasets through three modules implemented as separated software components (plugins) and hosted by our software framework Mebitoo that aims at automation of bioinformatics workflows. Then, we extended this pipeline to a general integrative network-based approach that involves also post-transcriptional interactions and reports the computational analysis of gene and miRNA transcriptomes, DNA methylome, and somatic mutations. This workflow enables users to identify putative disease drivers and novel targets for therapeutic treatment. Regarding the incorporation of somatic mutations with other genomic data sets, a stand-alone pipeline named “SnvDMiR” was implemented to explore possible genomic proximity relationships between somatic variants and both differentially methylated CpG sites as well as differentially expressed miRNAs. Along the same lines, but targeting the effects of genomic mutations, we developed an NGS pipeline and applied it to two groups of bacterial isolates (nasal and invasive) to investigate the phylogenetic positions of the recently emerged t504 clone (Spa-type t504) in the Saarland province of Germany and to better understand the infectivity mechanism of the invasive group. Motivated by all of this, we developed TFmiR as a freely available web server for deep and integrative downstream analysis of combinatorial regulatory interactions between TFs/genes and miRNAs that are involved in the pathogenesis of human diseases. In the frame of this thesis, we employed these approaches to investigate the molecular mechanisms of cellular differentiation (namely hematopoiesis) as an example for biological processes and human breast cancer and diabetes as examples for complex diseases. In summary, the work presented in this thesis has led to the development of interesting computational approaches that have been made available as non-commercial software toolkits. The provided topological and functional analyses of our approaches as validated on cellular differentiation and complex diseases promotes them as reliable systems biology tools for researchers across the life science communities.Die Funktionsweise verschiedener molekularer Elemente (Gene, Proteine, Mutationen, miRNAs, siRNAs,... etc.) ist mit den darunterliegenden zellulĂ€ren Fehlfunktionen als auch mit Krankheits-assoziierten zellulĂ€ren Signalwegen verknĂŒpft. DarĂŒber hinaus interagieren diese molekularen Elemente auch miteinander und bilden eine komplexe ineinander verwobene regulatorische Maschinerie, die wiederum zellulĂ€re Signalwege oder auch Krankheitsentwicklungen auf zellulĂ€rer Ebene beeinflusst. Aufgrund dessen ist heutzutage die AufklĂ€rung dieser molekularen Interaktionen in komplexen lebenden Systemen eines der Hauptziele der Systembiologie. In dieser Dissertation stellen wir rechnerbasierte AnsĂ€tze vor welche als Software frei verfĂŒgbar sind und die Integration von großen genomischen DatensĂ€tzen als auch eine damit verbundene AufklĂ€rung der kombinatorischen Vielfalt dieser regulatorischen Interaktionen zwischen den verschiedenen molekularen Elementen, ermöglichten. DafĂŒr entwickelten wir anfangs eine automatisierte GRN Pipeline, welche die regulatorische Maschinerie einer Zelle auf der Grundlage von Daten zur Genexpression, ĂŒber Sequenzierung als auch Annotierung von DatensĂ€tzen konstruiert. Diese Pipeline wurde in drei separate Module aufgeteilt, die alle als Software plugins verfĂŒgbar sind, und in unser Framework Mebitoo, welches bioinformatische ArbeitsablĂ€ufe automatisiert, integriert sind. Daraufhin erweiterten wir unser bisheriges Framework um einem allgemeinen und integrativen Netzwerk-basierten Ansatz, welcher post-transkriptionelle Interaktionen berĂŒcksichtigt und die rechnerbasierte Analyse von Genen als auch miRNA Transkriptomen, dem DNA Methylom und somatischen Mutationen mit einbezieht. Unser Ziel war es, dabei vermeintliche Verursacher von Krankheitsbildern als auch neue Ziele fĂŒr die therapeutische Behandlung von Krankheiten zu identifizieren. FĂŒr die Integration somatischer Mutationen wurde eine eigenstĂ€ndige Pipeline namens „SnvDMiR“ entwickelt, welche die Analyse von möglichen genomischen Nachbarschaftsbeziehungen zwischen somatischen Mutationen und differentiell methylierten CpG Positionen als auch differentiell exprimierten miRNAs, ermöglicht. FĂŒr die Analyse von somatischen Mutationen entwickelten wir zudem eine NGS Pipeline und wendeten diese auf zwei unterschiedliche Gruppen von bakteriellen Isolaten (nasale und invasive) an, um einerseits die phylogenetische Position des kĂŒrzlich im Saarland aufgekommenen Klons t504 (Spa-type t504) zu untersuchen, aber auch um den Mechanismus, der zu einer Infektion durch invasive StĂ€mme fĂŒhrt, besser zu verstehen. All dies motivierte uns dazu TFmiR als frei verfĂŒgbare Web-Applikation zu entwickeln, welche eine tief gehende integrative Analyse von den kombinatorischen regulatorischen Interaktionen zwischen TFs/Genen und miRNAs ermöglicht, die an der Krankheitsentwicklung im Menschen beteiligt sind. Die entwickelten Methoden wurden auf die zellulĂ€re Differenzierung (HĂ€matopoese), als Beispiel fĂŒr einen biologischen Prozess, als auch auf Brustkrebs und Diabetes, als Beispiele fĂŒr komplexe Krankheiten, angewendet um deren molekulare Mechanismen zu untersuchen. Zusammenfassend hat diese Arbeit zur Entwicklung von interessanten, rechnergestĂŒtzten Methoden gefĂŒhrt, welche als nicht-kommerzielle Software publiziert wurden. Die Validierung unserer Methoden anhand von topologischen und funktionsbasierten Analysen sowohl in zellulĂ€rer Differenzierung als auch komplexen Krankheiten, machen diese zu verlĂ€sslichen systembiologischen Werkzeugen fĂŒr Wissenschaftler aus den unterschiedlichsten Naturwissenschaftsbereichen

    Expression data dnalysis and regulatory network inference by means of correlation patterns

    Get PDF
    With the advance of high-throughput techniques, the amount of available data in the bio-molecular field is rapidly growing. It is now possible to measure genome-wide aspects of an entire biological system as a whole. Correlations that emerge due to internal dependency structures of these systems entail the formation of characteristic patterns in the corresponding data. The extraction of these patterns has become an integral part of computational biology. By triggering perturbations and interventions it is possible to induce an alteration of patterns, which may help to derive the dependency structures present in the system. In particular, differential expression experiments may yield alternate patterns that we can use to approximate the actual interplay of regulatory proteins and genetic elements, namely, the regulatory network of a cell. In this work, we examine the detection of correlation patterns from bio-molecular data and we evaluate their applicability in terms of protein contact prediction, experimental artifact removal, the discovery of unexpected expression patterns and genome-scale inference of regulatory networks. Correlation patterns are not limited to expression data. Their analysis in the context of conserved interfaces among proteins is useful to estimate whether these may have co-evolved. Patterns that hint on correlated mutations would then occur in the associated protein sequences as well. We employ a conceptually simple sampling strategy to decide whether or not two pathway elements share a conserved interface and are thus likely to be in physical contact. We successfully apply our method to a system of ABC-transporters and two-component systems from the phylum of Firmicute bacteria. For spatially resolved gene expression data like microarrays, the detection of artifacts, as opposed to noise, corresponds to the extraction of localized patterns that resemble outliers in a given region. We develop a method to detect and remove such artifacts using a sliding-window approach. Our method is very accurate and it is shown to adapt to other platforms like custom arrays as well. Further, we developed Padesco as a way to reveal unexpected expression patterns. We extract frequent and recurring patterns that are conserved across many experiments. For a specific experiment, we predict whether a gene deviates from its expected behaviour. We show that Padesco is an effective approach for selecting promising candidates from differential expression experiments. In Chapter 5, we then focus on the inference of genome-scale regulatory networks from expression data. Here, correlation patterns have proven useful for the data-driven estimation of regulatory interactions. We show that, for reliable eukaryotic network inference, the integration of prior networks is essential. We reveal that this integration leads to an over-estimate of network-wide quality estimates and suggest a corrective procedure, CoRe, to counterbalance this effect. CoRe drastically improves the false discovery rate of the originally predicted networks. We further suggest a consensus approach in combination with an extended set of topological features to obtain a more accurate estimate of the eukaryotic regulatory network for yeast. In the course of this work we show how correlation patterns can be detected and how they can be applied for various problem settings in computational molecular biology. We develop and discuss competitive approaches for the prediction of protein contacts, artifact repair, differential expression analysis, and network inference and show their applicability in practical setups.Mit der Weiterentwicklung von Hochdurchsatztechniken steigt die Anzahl verfĂŒgbarer Daten im Bereich der Molekularbiologie rapide an. Es ist heute möglich, genomweite Aspekte eines ganzen biologischen Systems komplett zu erfassen. Korrelationen, die aufgrund der internen AbhĂ€ngigkeits-Strukturen dieser Systeme enstehen, fĂŒhren zu charakteristischen Mustern in gemessenen Daten. Die Extraktion dieser Muster ist zum integralen Bestandteil der Bioinformatik geworden. Durch geplante Eingriffe in das System ist es möglich Muster-Änderungen auszulösen, die helfen, die AbhĂ€ngigkeits-Strukturen des Systems abzuleiten. Speziell differentielle Expressions-Experimente können Muster-Wechsel bedingen, die wir verwenden können, um uns dem tatsĂ€chlichen Wechselspiel von regulatorischen Proteinen und genetischen Elementen anzunĂ€hern, also dem regulatorischen Netzwerk einer Zelle. In der vorliegenden Arbeit beschĂ€ftigen wir uns mit der Erkennung von Korrelations-Mustern in molekularbiologischen Daten und schĂ€tzen ihre praktische Nutzbarkeit ab, speziell im Kontext der Kontakt-Vorhersage von Proteinen, der Entfernung von experimentellen Artefakten, der Aufdeckung unerwarteter Expressions-Muster und der genomweiten Vorhersage regulatorischer Netzwerke. Korrelations-Muster sind nicht auf Expressions-Daten beschrĂ€nkt. Ihre Analyse im Kontext konservierter Schnittstellen zwischen Proteinen liefert nĂŒtzliche Hinweise auf deren Ko-Evolution. Muster die auf korrelierte Mutationen hinweisen, wĂŒrden in diesem Fall auch in den entsprechenden Proteinsequenzen auftauchen. Wir nutzen eine einfache Sampling-Strategie, um zu entscheiden, ob zwei Elemente eines Pathways eine gemeinsame Schnittstelle teilen, berechnen also die Wahrscheinlichkeit fĂŒr deren physikalischen Kontakt. Wir wenden unsere Methode mit Erfolg auf ein System von ABC-Transportern und Zwei-Komponenten-Systemen aus dem Firmicutes Bakterien-Stamm an. FĂŒr rĂ€umlich aufgelöste Expressions-Daten wie Microarrays enspricht die Detektion von Artefakten der Extraktion lokal begrenzter Muster. Im Gegensatz zur Erkennung von Rauschen stellen diese innerhalb einer definierten Region Ausreißer dar. Wir entwickeln eine Methodik, um mit Hilfe eines Sliding-Window-Verfahrens, solche Artefakte zu erkennen und zu entfernen. Das Verfahren erkennt diese sehr zuverlĂ€ssig. Zudem kann es auf Daten diverser Plattformen, wie Custom-Arrays, eingesetzt werden. Als weitere Möglichkeit unerwartete Korrelations-Muster aufzudecken, entwickeln wir Padesco. Wir extrahieren hĂ€ufige und wiederkehrende Muster, die ĂŒber Experimente hinweg konserviert sind. FĂŒr ein bestimmtes Experiment sagen wir vorher, ob ein Gen von seinem erwarteten Verhalten abweicht. Wir zeigen, dass Padesco ein effektives Vorgehen ist, um vielversprechende Kandidaten eines differentiellen Expressions-Experiments auszuwĂ€hlen. Wir konzentrieren uns in Kapitel 5 auf die Vorhersage genomweiter regulatorischer Netzwerke aus Expressions-Daten. Hierbei haben sich Korrelations-Muster als nĂŒtzlich fĂŒr die datenbasierte AbschĂ€tzung regulatorischer Interaktionen erwiesen. Wir zeigen, dass fĂŒr die Inferenz eukaryotischer Systeme eine Integration zuvor bekannter Regulationen essentiell ist. Unsere Ergebnisse ergeben, dass diese Integration zur ÜberschĂ€tzung netzwerkĂŒbergreifender QualitĂ€tsmaße fĂŒhrt und wir schlagen eine Prozedur - CoRe - zur Verbesserung vor, um diesen Effekt auszugleichen. CoRe verbessert die False Discovery Rate der ursprĂŒnglich vorhergesagten Netzwerke drastisch. Weiterhin schlagen wir einen Konsensus-Ansatz in Kombination mit einem erweiterten Satz topologischer Features vor, um eine prĂ€zisere Vorhersage fĂŒr das eukaryotische Hefe-Netzwerk zu erhalten. Im Rahmen dieser Arbeit zeigen wir, wie Korrelations-Muster erkannt und wie sie auf verschiedene Problemstellungen der Bioinformatik angewandt werden können. Wir entwickeln und diskutieren AnsĂ€tze zur Vorhersage von Proteinkontakten, Behebung von Artefakten, differentiellen Analyse von Expressionsdaten und zur Vorhersage von Netzwerken und zeigen ihre Eignung im praktischen Einsatz
    • 

    corecore