5,984 research outputs found

    Randomization Adaptive Self-Stabilization

    Full text link
    We present a scheme to convert self-stabilizing algorithms that use randomization during and following convergence to self-stabilizing algorithms that use randomization only during convergence. We thus reduce the number of random bits from an infinite number to a bounded number. The scheme is applicable to the cases in which there exits a local predicate for each node, such that global consistency is implied by the union of the local predicates. We demonstrate our scheme over the token circulation algorithm of Herman and the recent constant time Byzantine self-stabilizing clock synchronization algorithm by Ben-Or, Dolev and Hoch. The application of our scheme results in the first constant time Byzantine self-stabilizing clock synchronization algorithm that uses a bounded number of random bits

    Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled CLEAR III trial

    Get PDF
    Background: Intraventricular haemorrhage is a subtype of intracerebral haemorrhage, with 50% mortality and serious disability for survivors. We aimed to test whether attempting to remove intraventricular haemorrhage with alteplase versus saline irrigation improved functional outcome. Methods: In this randomised, double-blinded, placebo-controlled, multiregional trial (CLEAR III), participants with a routinely placed extraventricular drain, in the intensive care unit with stable, non-traumatic intracerebral haemorrhage volume less than 30 mL, intraventricular haemorrhage obstructing the 3rd or 4th ventricles, and no underlying pathology were adaptively randomly assigned (1:1), via a web-based system to receive up to 12 doses, 8 h apart of 1 mg of alteplase or 0·9% saline via the extraventricular drain. The treating physician, clinical research staff, and participants were masked to treatment assignment. CT scans were obtained every 24 h throughout dosing. The primary efficacy outcome was good functional outcome, defined as a modified Rankin Scale score (mRS) of 3 or less at 180 days per central adjudication by blinded evaluators. This study is registered with ClinicalTrials.gov, NCT00784134. Findings: Between Sept 18, 2009, and Jan 13, 2015, 500 patients were randomised: 249 to the alteplase group and 251 to the saline group. 180-day follow-up data were available for analysis from 246 of 249 participants in the alteplase group and 245 of 251 participants in the placebo group. The primary efficacy outcome was similar in each group (good outcome in alteplase group 48% vs saline 45%; risk ratio [RR] 1·06 [95% CI 0·88–1·28; p=0·554]). A difference of 3·5% (RR 1·08 [95% CI 0·90–1·29], p=0·420) was found after adjustment for intraventricular haemorrhage size and thalamic intracerebral haemorrhage. At 180 days, the treatment group had lower case fatality (46 [18%] vs saline 73 [29%], hazard ratio 0·60 [95% CI 0·41–0·86], p=0·006), but a greater proportion with mRS 5 (42 [17%] vs 21 [9%]; RR 1·99 [95% CI 1·22–3·26], p=0·007). Ventriculitis (17 [7%] alteplase vs 31 [12%] saline; RR 0·55 [95% CI 0·31–0·97], p=0·048) and serious adverse events (114 [46%] alteplase vs 151 [60%] saline; RR 0·76 [95% CI 0·64–0·90], p=0·002) were less frequent with alteplase treatment. Symptomatic bleeding (six [2%] in the alteplase group vs five [2%] in the saline group; RR 1·21 [95% CI 0·37–3·91], p=0·771) was similar. Interpretation: In patients with intraventricular haemorrhage and a routine extraventricular drain, irrigation with alteplase did not substantially improve functional outcomes at the mRS 3 cutoff compared with irrigation with saline. Protocol-based use of alteplase with extraventricular drain seems safe. Future investigation is needed to determine whether a greater frequency of complete intraventricular haemorrhage removal via alteplase produces gains in functional status

    Distributed Computing with Adaptive Heuristics

    Full text link
    We use ideas from distributed computing to study dynamic environments in which computational nodes, or decision makers, follow adaptive heuristics (Hart 2005), i.e., simple and unsophisticated rules of behavior, e.g., repeatedly "best replying" to others' actions, and minimizing "regret", that have been extensively studied in game theory and economics. We explore when convergence of such simple dynamics to an equilibrium is guaranteed in asynchronous computational environments, where nodes can act at any time. Our research agenda, distributed computing with adaptive heuristics, lies on the borderline of computer science (including distributed computing and learning) and game theory (including game dynamics and adaptive heuristics). We exhibit a general non-termination result for a broad class of heuristics with bounded recall---that is, simple rules of behavior that depend only on recent history of interaction between nodes. We consider implications of our result across a wide variety of interesting and timely applications: game theory, circuit design, social networks, routing and congestion control. We also study the computational and communication complexity of asynchronous dynamics and present some basic observations regarding the effects of asynchrony on no-regret dynamics. We believe that our work opens a new avenue for research in both distributed computing and game theory.Comment: 36 pages, four figures. Expands both technical results and discussion of v1. Revised version will appear in the proceedings of Innovations in Computer Science 201

    FISCAL-MONETARY POLICY COORDINATION AND DEBT MANAGEMENT: A TWO STAGE DYNAMIC ANALYSIS

    Get PDF
    This paper studies the interaction between two autonomous policymakers, the central bank and the government, in managing public debt as the result of a two-stage game. In the first stage the institutional regime is established. This determines the equilibrium solution to be applied in the second stage, in which a differential game is played between the two policymakers. It is shown that, if the policymakers can communicate before the game is played, (multiple-equilibrium) coordination problems can be solved by using the concept of correlated equilibrium. Unlike Nash equilibrium, which only allows for individualistic and independent behaviour, a correlated equilibrium allows formonetary and fiscal policies, differential games, correlated equilibrium.

    Mean Field Control for Efficient Mixing of Energy Loads

    Full text link
    We pose an engineering challenge of controlling an Ensemble of Energy Devices via coordinated, implementation-light and randomized on/off switching as a problem in Non-Equilibrium Statistical Mechanics. We show that Mean Field Control} with nonlinear feedback on the cumulative consumption, assumed available to the aggregator via direct physical measurements of the energy flow, allows the ensemble to recover from its use in the Demand Response regime, i.e. transition to a statistical steady state, significantly faster than in the case of the fixed feedback. Moreover when the nonlinearity is sufficiently strong, one observes the phenomenon of "super-relaxation" -- where the total instantaneous energy consumption of the ensemble transitions to the steady state much faster than the underlying probability distribution of the devices over their state space, while also leaving almost no devices outside of the comfort zone.Comment: 7 pages, 5 figure
    corecore