1,516 research outputs found

    Adaptive traffic signal control using approximate dynamic programming

    Get PDF
    This paper presents a study on an adaptive traffic signal controller for real-time operation. The controller aims for three operational objectives: dynamic allocation of green time, automatic adjustment to control parameters, and fast revision of signal plans. The control algorithm is built on approximate dynamic programming (ADP). This approach substantially reduces computational burden by using an approximation to the value function of the dynamic programming and reinforcement learning to update the approximation. We investigate temporal-difference learning and perturbation learning as specific learning techniques for the ADP approach. We find in computer simulation that the ADP controllers achieve substantial reduction in vehicle delays in comparison with optimised fixed-time plans. Our results show that substantial benefits can be gained by increasing the frequency at which the signal plans are revised, which can be achieved conveniently using the ADP approach

    Q-CP: Learning Action Values for Cooperative Planning

    Get PDF
    Research on multi-robot systems has demonstrated promising results in manifold applications and domains. Still, efficiently learning an effective robot behaviors is very difficult, due to unstructured scenarios, high uncertainties, and large state dimensionality (e.g. hyper-redundant and groups of robot). To alleviate this problem, we present Q-CP a cooperative model-based reinforcement learning algorithm, which exploits action values to both (1) guide the exploration of the state space and (2) generate effective policies. Specifically, we exploit Q-learning to attack the curse-of-dimensionality in the iterations of a Monte-Carlo Tree Search. We implement and evaluate Q-CP on different stochastic cooperative (general-sum) games: (1) a simple cooperative navigation problem among 3 robots, (2) a cooperation scenario between a pair of KUKA YouBots performing hand-overs, and (3) a coordination task between two mobile robots entering a door. The obtained results show the effectiveness of Q-CP in the chosen applications, where action values drive the exploration and reduce the computational demand of the planning process while achieving good performance

    Playing Atari with Deep Reinforcement Learning

    Full text link
    We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We find that it outperforms all previous approaches on six of the games and surpasses a human expert on three of them.Comment: NIPS Deep Learning Workshop 201

    CrossNorm: Normalization for Off-Policy TD Reinforcement Learning

    Full text link
    Off-policy temporal difference (TD) methods are a powerful class of reinforcement learning (RL) algorithms. Intriguingly, deep off-policy TD algorithms are not commonly used in combination with feature normalization techniques, despite positive effects of normalization in other domains. We show that naive application of existing normalization techniques is indeed not effective, but that well-designed normalization improves optimization stability and removes the necessity of target networks. In particular, we introduce a normalization based on a mixture of on- and off-policy transitions, which we call cross-normalization. It can be regarded as an extension of batch normalization that re-centers data for two different distributions, as present in off-policy learning. Applied to DDPG and TD3, cross-normalization improves over the state of the art across a range of MuJoCo benchmark tasks

    An Emphatic Approach to the Problem of Off-policy Temporal-Difference Learning

    Full text link
    In this paper we introduce the idea of improving the performance of parametric temporal-difference (TD) learning algorithms by selectively emphasizing or de-emphasizing their updates on different time steps. In particular, we show that varying the emphasis of linear TD(λ\lambda)'s updates in a particular way causes its expected update to become stable under off-policy training. The only prior model-free TD methods to achieve this with per-step computation linear in the number of function approximation parameters are the gradient-TD family of methods including TDC, GTD(λ\lambda), and GQ(λ\lambda). Compared to these methods, our _emphatic TD(λ\lambda)_ is simpler and easier to use; it has only one learned parameter vector and one step-size parameter. Our treatment includes general state-dependent discounting and bootstrapping functions, and a way of specifying varying degrees of interest in accurately valuing different states.Comment: 29 pages This is a significant revision based on the first set of reviews. The most important change was to signal early that the main result is about stability, not convergenc
    corecore