7,733 research outputs found

    Wiretap and Gelfand-Pinsker Channels Analogy and its Applications

    Full text link
    An analogy framework between wiretap channels (WTCs) and state-dependent point-to-point channels with non-causal encoder channel state information (referred to as Gelfand-Pinker channels (GPCs)) is proposed. A good sequence of stealth-wiretap codes is shown to induce a good sequence of codes for a corresponding GPC. Consequently, the framework enables exploiting existing results for GPCs to produce converse proofs for their wiretap analogs. The analogy readily extends to multiuser broadcasting scenarios, encompassing broadcast channels (BCs) with deterministic components, degradation ordering between users, and BCs with cooperative receivers. Given a wiretap BC (WTBC) with two receivers and one eavesdropper, an analogous Gelfand-Pinsker BC (GPBC) is constructed by converting the eavesdropper's observation sequence into a state sequence with an appropriate product distribution (induced by the stealth-wiretap code for the WTBC), and non-causally revealing the states to the encoder. The transition matrix of the state-dependent GPBC is extracted from WTBC's transition law, with the eavesdropper's output playing the role of the channel state. Past capacity results for the semi-deterministic (SD) GPBC and the physically-degraded (PD) GPBC with an informed receiver are leveraged to furnish analogy-based converse proofs for the analogous WTBC setups. This characterizes the secrecy-capacity regions of the SD-WTBC and the PD-WTBC, in which the stronger receiver also observes the eavesdropper's channel output. These derivations exemplify how the wiretap-GP analogy enables translating results on one problem into advances in the study of the other

    The Sender-Excited Secret Key Agreement Model: Capacity, Reliability and Secrecy Exponents

    Full text link
    We consider the secret key generation problem when sources are randomly excited by the sender and there is a noiseless public discussion channel. Our setting is thus similar to recent works on channels with action-dependent states where the channel state may be influenced by some of the parties involved. We derive single-letter expressions for the secret key capacity through a type of source emulation analysis. We also derive lower bounds on the achievable reliability and secrecy exponents, i.e., the exponential rates of decay of the probability of decoding error and of the information leakage. These exponents allow us to determine a set of strongly-achievable secret key rates. For degraded eavesdroppers the maximum strongly-achievable rate equals the secret key capacity; our exponents can also be specialized to previously known results. In deriving our strong achievability results we introduce a coding scheme that combines wiretap coding (to excite the channel) and key extraction (to distill keys from residual randomness). The secret key capacity is naturally seen to be a combination of both source- and channel-type randomness. Through examples we illustrate a fundamental interplay between the portion of the secret key rate due to each type of randomness. We also illustrate inherent tradeoffs between the achievable reliability and secrecy exponents. Our new scheme also naturally accommodates rate limits on the public discussion. We show that under rate constraints we are able to achieve larger rates than those that can be attained through a pure source emulation strategy.Comment: 18 pages, 8 figures; Submitted to the IEEE Transactions on Information Theory; Revised in Oct 201

    Characterization of Information Channels for Asymptotic Mean Stationarity and Stochastic Stability of Non-stationary/Unstable Linear Systems

    Full text link
    Stabilization of non-stationary linear systems over noisy communication channels is considered. Stochastically stable sources, and unstable but noise-free or bounded-noise systems have been extensively studied in information theory and control theory literature since 1970s, with a renewed interest in the past decade. There have also been studies on non-causal and causal coding of unstable/non-stationary linear Gaussian sources. In this paper, tight necessary and sufficient conditions for stochastic stabilizability of unstable (non-stationary) possibly multi-dimensional linear systems driven by Gaussian noise over discrete channels (possibly with memory and feedback) are presented. Stochastic stability notions include recurrence, asymptotic mean stationarity and sample path ergodicity, and the existence of finite second moments. Our constructive proof uses random-time state-dependent stochastic drift criteria for stabilization of Markov chains. For asymptotic mean stationarity (and thus sample path ergodicity), it is sufficient that the capacity of a channel is (strictly) greater than the sum of the logarithms of the unstable pole magnitudes for memoryless channels and a class of channels with memory. This condition is also necessary under a mild technical condition. Sufficient conditions for the existence of finite average second moments for such systems driven by unbounded noise are provided.Comment: To appear in IEEE Transactions on Information Theor

    Bounds on Information Combining With Quantum Side Information

    Full text link
    "Bounds on information combining" are entropic inequalities that determine how the information (entropy) of a set of random variables can change when these are combined in certain prescribed ways. Such bounds play an important role in classical information theory, particularly in coding and Shannon theory; entropy power inequalities are special instances of them. The arguably most elementary kind of information combining is the addition of two binary random variables (a CNOT gate), and the resulting quantities play an important role in Belief propagation and Polar coding. We investigate this problem in the setting where quantum side information is available, which has been recognized as a hard setting for entropy power inequalities. Our main technical result is a non-trivial, and close to optimal, lower bound on the combined entropy, which can be seen as an almost optimal "quantum Mrs. Gerber's Lemma". Our proof uses three main ingredients: (1) a new bound on the concavity of von Neumann entropy, which is tight in the regime of low pairwise state fidelities; (2) the quantitative improvement of strong subadditivity due to Fawzi-Renner, in which we manage to handle the minimization over recovery maps; (3) recent duality results on classical-quantum-channels due to Renes et al. We furthermore present conjectures on the optimal lower and upper bounds under quantum side information, supported by interesting analytical observations and strong numerical evidence. We finally apply our bounds to Polar coding for binary-input classical-quantum channels, and show the following three results: (A) Even non-stationary channels polarize under the polar transform. (B) The blocklength required to approach the symmetric capacity scales at most sub-exponentially in the gap to capacity. (C) Under the aforementioned lower bound conjecture, a blocklength polynomial in the gap suffices.Comment: 23 pages, 6 figures; v2: small correction
    • …
    corecore