2,178 research outputs found

    Most Likely Transformations

    Full text link
    We propose and study properties of maximum likelihood estimators in the class of conditional transformation models. Based on a suitable explicit parameterisation of the unconditional or conditional transformation function, we establish a cascade of increasingly complex transformation models that can be estimated, compared and analysed in the maximum likelihood framework. Models for the unconditional or conditional distribution function of any univariate response variable can be set-up and estimated in the same theoretical and computational framework simply by choosing an appropriate transformation function and parameterisation thereof. The ability to evaluate the distribution function directly allows us to estimate models based on the exact likelihood, especially in the presence of random censoring or truncation. For discrete and continuous responses, we establish the asymptotic normality of the proposed estimators. A reference software implementation of maximum likelihood-based estimation for conditional transformation models allowing the same flexibility as the theory developed here was employed to illustrate the wide range of possible applications.Comment: Accepted for publication by the Scandinavian Journal of Statistics 2017-06-1

    An update on statistical boosting in biomedicine

    Get PDF
    Statistical boosting algorithms have triggered a lot of research during the last decade. They combine a powerful machine-learning approach with classical statistical modelling, offering various practical advantages like automated variable selection and implicit regularization of effect estimates. They are extremely flexible, as the underlying base-learners (regression functions defining the type of effect for the explanatory variables) can be combined with any kind of loss function (target function to be optimized, defining the type of regression setting). In this review article, we highlight the most recent methodological developments on statistical boosting regarding variable selection, functional regression and advanced time-to-event modelling. Additionally, we provide a short overview on relevant applications of statistical boosting in biomedicine
    • …
    corecore