982 research outputs found

    Non-three-colorable common graphs exist

    Full text link
    A graph H is called common if the total number of copies of H in every graph and its complement asymptotically minimizes for random graphs. A former conjecture of Burr and Rosta, extending a conjecture of Erdos asserted that every graph is common. Thomason disproved both conjectures by showing that the complete graph of order four is not common. It is now known that in fact the common graphs are very rare. Answering a question of Sidorenko and of Jagger, Stovicek and Thomason from 1996 we show that the 5-wheel is common. This provides the first example of a common graph that is not three-colorable.Comment: 9 page

    Characterising and recognising game-perfect graphs

    Get PDF
    Consider a vertex colouring game played on a simple graph with kk permissible colours. Two players, a maker and a breaker, take turns to colour an uncoloured vertex such that adjacent vertices receive different colours. The game ends once the graph is fully coloured, in which case the maker wins, or the graph can no longer be fully coloured, in which case the breaker wins. In the game gBg_B, the breaker makes the first move. Our main focus is on the class of gBg_B-perfect graphs: graphs such that for every induced subgraph HH, the game gBg_B played on HH admits a winning strategy for the maker with only ω(H)\omega(H) colours, where ω(H)\omega(H) denotes the clique number of HH. Complementing analogous results for other variations of the game, we characterise gBg_B-perfect graphs in two ways, by forbidden induced subgraphs and by explicit structural descriptions. We also present a clique module decomposition, which may be of independent interest, that allows us to efficiently recognise gBg_B-perfect graphs.Comment: 39 pages, 8 figures. An extended abstract was accepted at the International Colloquium on Graph Theory (ICGT) 201

    Vertex elimination orderings for hereditary graph classes

    Full text link
    We provide a general method to prove the existence and compute efficiently elimination orderings in graphs. Our method relies on several tools that were known before, but that were not put together so far: the algorithm LexBFS due to Rose, Tarjan and Lueker, one of its properties discovered by Berry and Bordat, and a local decomposition property of graphs discovered by Maffray, Trotignon and Vu\vskovi\'c. We use this method to prove the existence of elimination orderings in several classes of graphs, and to compute them in linear time. Some of the classes have already been studied, namely even-hole-free graphs, square-theta-free Berge graphs, universally signable graphs and wheel-free graphs. Some other classes are new. It turns out that all the classes that we study in this paper can be defined by excluding some of the so-called Truemper configurations. For several classes of graphs, we obtain directly bounds on the chromatic number, or fast algorithms for the maximum clique problem or the coloring problem

    Graphs that are not pairwise compatible: A new proof technique (extended abstract)

    Get PDF
    A graph G = (V,E) is a pairwise compatibility graph (PCG) if there exists an edge-weighted tree T and two non-negative real numbers dminand dmax, dmin≤ dmax, such that each node u∈V is uniquely associated to a leaf of T and there is an edge (u, v) ∈ E if and only if dmin≤ dT(u, v) ≤ dmax, where dT(u, v) is the sum of the weights of the edges on the unique path PT(u, v) from u to v in T. Understanding which graph classes lie inside and which ones outside the PCG class is an important issue. Despite numerous efforts, a complete characterization of the PCG class is not known yet. In this paper we propose a new proof technique that allows us to show that some interesting classes of graphs have empty intersection with PCG. We demonstrate our technique by showing many graph classes that do not lie in PCG. As a side effect, we show a not pairwise compatibility planar graph with 8 nodes (i.e. C28), so improving the previously known result concerning the smallest planar graph known not to be PCG
    corecore