876 research outputs found

    New Archive-Based Ant Colony Optimization Algorithms for Learning Predictive Rules from Data

    Get PDF
    Data mining is the process of extracting knowledge and patterns from data. Classification and Regression are among the major data mining tasks, where the goal is to predict a value of an attribute of interest for each data instance, given the values of a set of predictive attributes. Most classification and regression problems involve continuous, ordinal and categorical attributes. Currently Ant Colony Optimization (ACO) algorithms have focused on directly handling categorical attributes only; continuous attributes are transformed using a discretisation procedure in either a preprocessing stage or dynamically during the rule creation. The use of a discretisation procedure has several limitations: (i) it increases the computational runtime, since several candidates values need to evaluated; (ii) requires access to the entire attribute domain, which in some applications all data is not available; (iii) the values used to create discrete intervals are not optimised in combination with the values of other attributes. This thesis investigates the use of solution archive pheromone model, based on Ant Colony Optimization for mixed-variable (ACOMV) algorithm, to directly cope with all attribute types. Firstly, an archive-based ACO classification algorithm is presented, followed by an automatic design framework to generate new configuration of ACO algorithms. Then, we addressed the challenging problem of mining data streams, presenting a new ACO algorithm in combination with a hybrid pheromone model. Finally, the archive-based approach is extended to cope with regression problems. All algorithms presented are compared against well-known algorithms from the literature using publicly available data sets. Our results have been shown to improve the computational time while maintaining a competitive predictive performance

    Optimisation of Rural Biomass Waste to Energy Systems

    Get PDF
    Biomass waste to energy conversion systems were traditionally installed on rural farms to manage manure disposal and mitigate odour. These systems provide heating and electricity and are increasingly viewed as sources of revenue. Poorly operated or sized systems will not realise revenue. For farms that would like to install such systems, there is no tool available that optimises the systems prior to determination of their commercial viability. As such, there is a need to optimise these systems to determine the threshold herd size for commercially viability, and their maximum revenue. The associated optimisation problem is non-linear, non-convex and very difficult. Consequently, its solution is explored with a metaheuristic. The Tabu Search metaheuristic was adapted to solve this problem by: multi-period and diversification strategies that effectively search the solution space, handling of constraints using different strategies for searching feasible regions, with incursions into infeasible regions, and evaluation of a multi-objective function exploiting an approximation of the Pareto front. This dissertation is on research done to determine the threshold herd size for commercial viability of the biomass waste to energy conversion systems, and the maximum revenue from these systems. The threshold herd size was found by optimisation of the systems for different herd sizes. The threshold herd sizes were 80 dairy cows and 1200 swines for Quebec, and 100 dairy cows for Ontario. These considered co-digestion of manure and food waste, use of by-products, food waste tipping fees and an increase in the electricity tariff. The threshold herd size for Quebec also considered a favourable net metering contract. When digesting manure only, the threshold herd sizes were, 350 dairy cows for Quebec and 200 dairy cows for Ontario. The maximum revenue from the biomass waste to energy system was determined by optimising the system for a given herd size. Revenue was maximised by: minimising cost through proper sizing of the components, minimising consumption of propane and electricity from the grid, selling electricity to the utility, and capitalising on renewable energy incentives. The maximum revenue was determined for a herd size of 500 cows, and recommendations were made on its mode of operation

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    THE STABILITY ANALYSIS FOR WIND TURBINES WITH DOUBLY FED INDUCTION GENERATORS

    Get PDF
    The quickly increasing, widespread use of wind generation around the world reduces carbon emissions, decreases the effects of global warming, and lowers dependence on fossil fuels. However, the growing penetration of wind power requires more effort to maintain power systems stability. This dissertation focuses on developing a novel algorithm which dynamically optimizes the proportional-integral (PI) controllers of a doubly fed induction generator (DFIG) driven by a wind turbine to increase the transient performance based on small signal stability analysis. Firstly, the impact of wind generation is introduced. The stability of power systems with wind generation is described, including the different wind generator technologies, and the challenges in high wind penetration conditions. Secondly, the small signal stability analysis model of wind turbines with DFIG is developed, including detailed rotor/grid side converter models, and the interface with the power grid. Thirdly, Particle swarm optimization (PSO) is selected to off-line calculate the optimal parameters of DFIG PI gains to maximize the damping ratios of system eigenvalues in different wind speeds. Based on the historical data, the artificial neural networks (ANNs) are designed, trained, and have the ability to quickly forecast the optimal parameters. The ANN controllers are designed to dynamically adjust PI gains online. Finally, system studies have been provided for a single machine connected to an infinite bus system (SMIB), a single machine connected to a weak grid (SMWG), and a multi machine system (MMS), respectively. A detailed analysis for MMS with different wind penetration levels has been shown according to grid code. Moreover, voltage stability improvement and grid loss reduction in IEEE 34-bus distribution system, including WT-DFIG under unbalanced heavy loading conditions, are investigated. The simulation results show the algorithm can greatly reduce low frequency oscillations and improve transient performance of DFIGs system. It realizes off-line optimization of MMS, online forecasts the optimal PI gains, and adaptively adjusts PI gains. The results also provide some useful conclusions and explorations for wind generation design, operations, and connection to the power grid. Advisors: Sohrab Asgarpoor and Wei Qia

    Identification and development of microgrids emergency control procedures

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 200

    Integration of renewable energy into Nigerian power systems

    Get PDF
    Many countries are advancing down the road of electricity privatization, deregulation, and competition as a solution to their growing electricity demand and other challenges posed by the monopolistic nature of the existing structure. Presently, Nigeria has a supply deficit of electricity as a result of the growing demand. This imbalance has negatively affected the economy of the country and the social-economic well-being of the population. Hence, there is an urgent need to reform the power sector for greater efficiency and better performance. The objectives of the reform are to meet the growing power demand by increasing the electric power generation and also by increasing competitiveness through the participation of more private sector entities. The renewable energy integration is one way of increasing the electricity generation in the country in order to cater for the growing demand adequately. Examples of the renewable energy that is available in the country include wind, geothermal, solar and hydro. They are considered to be environmentally friendly, replenishable and do not contribute to the climate change phenomena. The country presently generates the bulk of its electricity from both thermal (85%) and hydroelectric (15%) power plants. While electricity generation from the thermal power stations constitutes the largest share of greenhouse emission, this is mostly from burning coal and natural gas. The effect of this high proportion of greenhouse emission causes climate change which is referred to as a variation in the climate system statistical properties over a long period of time. It has been observed that many of the activities of human beings are contributory factors to the release of these greenhouse gases (GHG). But, as the traditional sources of energy continue to threaten the present and future existence on the planet earth, it is, therefore, imperative to increase the integration of the variable renewable energy sources in a sustainable and eco-friendly manner over a long period of time. The variability and the uncertainties of the renewable energy source's output, present a major challenge in the design of an efficient electricity market in a deregulated environment. The system deregulation and the use of renewable sources for the generation of electricity are major changes presently being experienced in power system. In a deregulated power system, the integration of renewable generation and its penetration affects both the physical and the economic operations. The main focus of this research is on the integration of wind energy into Nigerian power systems. Up till now, research on the availability of the wind energy and its economic impacts has been limited in Nigeria. Generally, the previous study of wind energy availability in Nigeria has been limited in scope. The wind energy assessment study has not been detailed enough to be able to ascertain the wind energy potential of the country. To cope with this shortcoming, a detailed statistical wind modeling and forecasting methodology have been used in this thesis to determine the amount of extractable wind energy in six selected locations in Nigeria using historical wind speed data for 30 years. The accuracy test of the statistical models was also carried using the Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Chi-Square methods to determine the inherent error margin in the modeling and analysis. It is found that the error margin of the evaluations falls within the expected permissible tolerance range. For a more detailed wind assessment study of the Nigeria weather, the seasonal variation of the weather conditions as it affects the wind speed and availability during the two major seasons of dry and rainy was considered. A Self-Adaptive Differential Evolution (SADE) was used to solve the economic load dispatch problem that considers the valve-point effects and the transmission losses subject to many constraints. The results obtained were compared with those obtained using the "standard" Differential Evolution (DE), Genetic Algorithm (GA), and traditional Gradient Descent method. The results of the SADE obtained when compared with the GA, DE, and Gradient descent show the superiority of SADE over all the other methods. The research work shows that the wind energy is available in commercial quantity for generation of electricity in Nigeria. And, if tapped would help reduce the gap between the demand and supply of electricity in the country. It was also demonstrated that the wind energy integration into the power systems affects the generators total production cost

    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016)

    Get PDF
    Proceedings of the First PhD Symposium on Sustainable Ultrascale Computing Systems (NESUS PhD 2016) Timisoara, Romania. February 8-11, 2016.The PhD Symposium was a very good opportunity for the young researchers to share information and knowledge, to present their current research, and to discuss topics with other students in order to look for synergies and common research topics. The idea was very successful and the assessment made by the PhD Student was very good. It also helped to achieve one of the major goals of the NESUS Action: to establish an open European research network targeting sustainable solutions for ultrascale computing aiming at cross fertilization among HPC, large scale distributed systems, and big data management, training, contributing to glue disparate researchers working across different areas and provide a meeting ground for researchers in these separate areas to exchange ideas, to identify synergies, and to pursue common activities in research topics such as sustainable software solutions (applications and system software stack), data management, energy efficiency, and resilience.European Cooperation in Science and Technology. COS

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    • …
    corecore