1,176 research outputs found

    Random procedures for dominating sets in bipartite graphs

    Get PDF
    Using multilinear functions and random procedures, new upper bounds on the domination number of a bipartite graph in terms of the cardinalities and the minimum degrees of the two colour classes are established

    Fast Distributed Approximation for Max-Cut

    Full text link
    Finding a maximum cut is a fundamental task in many computational settings. Surprisingly, it has been insufficiently studied in the classic distributed settings, where vertices communicate by synchronously sending messages to their neighbors according to the underlying graph, known as the LOCAL\mathcal{LOCAL} or CONGEST\mathcal{CONGEST} models. We amend this by obtaining almost optimal algorithms for Max-Cut on a wide class of graphs in these models. In particular, for any ϵ>0\epsilon > 0, we develop randomized approximation algorithms achieving a ratio of (1ϵ)(1-\epsilon) to the optimum for Max-Cut on bipartite graphs in the CONGEST\mathcal{CONGEST} model, and on general graphs in the LOCAL\mathcal{LOCAL} model. We further present efficient deterministic algorithms, including a 1/31/3-approximation for Max-Dicut in our models, thus improving the best known (randomized) ratio of 1/41/4. Our algorithms make non-trivial use of the greedy approach of Buchbinder et al. (SIAM Journal on Computing, 2015) for maximizing an unconstrained (non-monotone) submodular function, which may be of independent interest

    Random subgraphs make identification affordable

    Full text link
    An identifying code of a graph is a dominating set which uniquely determines all the vertices by their neighborhood within the code. Whereas graphs with large minimum degree have small domination number, this is not the case for the identifying code number (the size of a smallest identifying code), which indeed is not even a monotone parameter with respect to graph inclusion. We show that every graph GG with nn vertices, maximum degree Δ=ω(1)\Delta=\omega(1) and minimum degree δclogΔ\delta\geq c\log{\Delta}, for some constant c>0c>0, contains a large spanning subgraph which admits an identifying code with size O(nlogΔδ)O\left(\frac{n\log{\Delta}}{\delta}\right). In particular, if δ=Θ(n)\delta=\Theta(n), then GG has a dense spanning subgraph with identifying code O(logn)O\left(\log n\right), namely, of asymptotically optimal size. The subgraph we build is created using a probabilistic approach, and we use an interplay of various random methods to analyze it. Moreover we show that the result is essentially best possible, both in terms of the number of deleted edges and the size of the identifying code

    Investigations in the semi-strong product of graphs and bootstrap percolation

    Get PDF
    The semi-strong product of graphs G and H is a way of forming a new graph from the graphs G and H. The vertex set of the semi-strong product is the Cartesian product of the vertex sets of G and H, V(G) x V(H). The edges of the semi-strong product are determined as follows: (g1,h1)(g2,h2) is an edge of the product whenever g1g2 is an edge of G and h1h2 is an edge of H or g1 = g2 and h1h2 is an edge of H. A natural subject for investigation is to determine properties of the semi-strong product in terms of those properties of its factors. We investigate distance, independence, matching, and domination in the semi-strong product Bootstrap Percolation is a process defined on a graph. We begin with an initial set of infected vertices. In each subsequent round, uninfected vertices become infected if they are adjacent to at least r infected vertices. Once infected, vertices remain infected. The parameter r is called the percolation threshold. When G is finite, the infection either stops at a proper subset of G or all of V(G) becomes infected. If all of V(G) eventually becomes infected, then we say that the infection percolates and we call the initial set of infected vertices a percolating set. The cardinality of a minimum percolating set of G with percolation threshold r is denoted m(G,r). We determine m(G,r) for certain Kneser graphs and bipartite Kneser graphs
    corecore