509 research outputs found

    On inter-satellite laser ranging, clock synchronization and gravitational wave data analysis

    Get PDF
    [no abstract

    Analysis of radiofrequency-based methods for position and velocity determination of autonomous robots in lunar surface exploration missions

    Get PDF
    The use of distributed systems has been disruptive in almost any industrial sector, from manufacturing to processing plants from environmental monitoring to vehicle control, and many more. It is therefore natural to assess the benefits that such an advantageous engineering paradigm could bring to space exploration. In recent years, we have been witness to the emergence of concepts such as fractionated satellite systems, formation flying, megaconstellations, and femtoswarms. Most of these space missions have evolved from the idea of a decentralization of processes that were formerly performed in platforms conceived as monolithic systems. The application of this concept to robotic systems is not new, and a great deal of scientific contributions on multi-robot systems exists, focusing on different aspects such as cooperative robotics, behavioural or reactive control, distributed artificial intelligence, swarm multi-agent systems etc. The intrinsic advantages of distribution (improved reliability and efficiency, higher robustness, etc.) has been boosted by the exponential growing of computational power density and a simultaneous miniaturization of technology, leading to smaller and more powerful robotic platforms, which could make a distributed robotic system, made of small robotic agents, a powerful substitute to classical large robotic platforms. This thesis proposes, in the framework of multi-robot systems, a localization method for robotic agents in planetary surface exploration scenarios based on RF range and Doppler frequency shift analysis. The relevance of spatial localization awareness in agents belonging to a distributed robotic system is defined in the context of the advantages of robotic exploration. Different range determination techniques and, specifically, the advantages of including Doppler Effect in the determination of the relative position within the robotic system deployed are considered and the strengths and weaknesses analysed accordingly. Special attention is devoted to the noise sources present in the lunar environment, related to a practical (i.e. non-ideal) implementation architecture and its influence on the system performance. From this point of view, we develop a theoretical model for localization accuracy estimation, generated from power spectrum characteristics, in accordance with the system architecture proposed, and consolidated with numerical simulations and a parametrical assessment on a set of real references of components playing a key role in the overall performance. The selected system architecture is then implemented in a representative set-up and tested under laboratory conditions. Algorithms used for carrier frequency generation and frequency measurement are developed, applied and tested in the hardware-on-the-loop breadboard. The results show that Doppler frequency component can be measured with the proposed architecture, yielding a high sensitivity in the determination of relative speed even at standard communication frequencies (UHF), and improving significantly at higher bands (S, C, etc.). This enables the possibility of adding relative speed to relative position determination via sensor fusion techniques, improving the response time and accuracy during navigation through the exploration scenario

    Thermal infrared video stabilization for aerial monitoring of active wildfires

    Get PDF
    Measuring wildland fire behavior is essential for fire science and fire management. Aerial thermal infrared (TIR) imaging provides outstanding opportunities to acquire such information remotely. Variables such as fire rate of spread (ROS), fire radiative power (FRP), and fireline intensity may be measured explicitly both in time and space, providing the necessary data to study the response of fire behavior to weather, vegetation, topography, and firefighting efforts. However, raw TIR imagery acquired by unmanned aerial vehicles (UAVs) requires stabilization and georeferencing before any other processing can be performed. Aerial video usually suffers from instabilities produced by sensor movement. This problem is especially acute near an active wildfire due to fire-generated turbulence. Furthermore, the nature of fire TIR video presents some specific challenges that hinder robust interframe registration. Therefore, this article presents a software-based video stabilization algorithm specifically designed for TIR imagery of forest fires. After a comparative analysis of existing image registration algorithms, the KAZE feature-matching method was selected and accompanied by pre- and postprocessing modules. These included foreground histogram equalization and a multireference framework designed to increase the algorithm's robustness in the presence of missing or faulty frames. The performance of the proposed algorithm was validated in a total of nine video sequences acquired during field fire experiments. The proposed algorithm yielded a registration accuracy between 10 and 1000x higher than other tested methods, returned 10x more meaningful feature matches, and proved robust in the presence of faulty video frames. The ability to automatically cancel camera movement for every frame in a video sequence solves a key limitation in data processing pipelines and opens the door to a number of systematic fire behavior experimental analyses. Moreover, a completely automated process supports the development of decision support tools that can operate in real time during an emergency

    Advanced photonic and electronic systems - WILGA 2017

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers more than 350 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET by PAN and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2017 was the XL edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2017 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445

    Laser Ranging Interferometry for Future Gravity Missions : Instrument Design, Link Acquisition and Data Calibration

    Get PDF
    The presented study aims to improve the design solution adopted for the Laser Ranging Instrument of the GRACE Follow-On mission in terms of instrument layout, algorithms for the laser link acquisition and techniques for mitigating the range measurement noise. The first part of this work describes viable layout solutions of a heterodyne interferometer employed for intra-satellite range metrology and the major noise contributions which degrade the overall accuracy of the instrument. Together with the optical layout of the instrument, novel design concepts of the instrumenta s subsystems are also analyzed and tested. Precisely, a phasemeter designed to autonomously acquire and track a heterodyne signal with low signal-to-noise ratio in a frequency band that spans from 1MHz to 25MHz is presented. Particular attention is also dedicated to the mathematical modeling of the steering mirror dynamics and to the enhancement of its pointing performance by means of feedforward control. In the second part of this work, solutions for autonomously acquiring a laser signal buried in noise are analyzed and put in relation with the boundary constraints of the acquisition problem. The acquisition algorithms presented and the robustness of their design is verified mainly using numerical simulations. Experimental tests have also been performed for validating the simulation hypothesis and verifying their compliancy to a realistic mission scenario. The last part of this work describes a calibration algorithm which has been developed for minimizing, during data post-processing, the noise due to the tilt-to-piston coupling which represents one of the highest contributors to the overall measurement noise

    Investigation and evaluation of shuttle/GPS navigation system

    Get PDF
    Iterative procedures were used to analyze the performance of two preliminary shuttle/GPS navigation system configurations: an early OFT experimental system and a more sophisticated system which consolidates several separate navigation functions thus permitting net cost savings from decreased shuttle avionics weight and power consumption, and from reduced ground data processing. The GPS system can provide on-orbit navigation accuracy an order of magnitude better than the baseline system, with very adequate link margins. The worst-case link margin is 4.3 dB. This link margin accounts for shuttle RF circuit losses which were minimized under the constraints of program schedule and environmental limitations. Implicit in the link analyses are the location trade-offs for preamplifiers and antennas

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs
    • …
    corecore