6,524 research outputs found

    A System for Induction of Oblique Decision Trees

    Full text link
    This article describes a new system for induction of oblique decision trees. This system, OC1, combines deterministic hill-climbing with two forms of randomization to find a good oblique split (in the form of a hyperplane) at each node of a decision tree. Oblique decision tree methods are tuned especially for domains in which the attributes are numeric, although they can be adapted to symbolic or mixed symbolic/numeric attributes. We present extensive empirical studies, using both real and artificial data, that analyze OC1's ability to construct oblique trees that are smaller and more accurate than their axis-parallel counterparts. We also examine the benefits of randomization for the construction of oblique decision trees.Comment: See http://www.jair.org/ for an online appendix and other files accompanying this articl

    How to Find More Supernovae with Less Work: Object Classification Techniques for Difference Imaging

    Get PDF
    We present the results of applying new object classification techniques to difference images in the context of the Nearby Supernova Factory supernova search. Most current supernova searches subtract reference images from new images, identify objects in these difference images, and apply simple threshold cuts on parameters such as statistical significance, shape, and motion to reject objects such as cosmic rays, asteroids, and subtraction artifacts. Although most static objects subtract cleanly, even a very low false positive detection rate can lead to hundreds of non-supernova candidates which must be vetted by human inspection before triggering additional followup. In comparison to simple threshold cuts, more sophisticated methods such as Boosted Decision Trees, Random Forests, and Support Vector Machines provide dramatically better object discrimination. At the Nearby Supernova Factory, we reduced the number of non-supernova candidates by a factor of 10 while increasing our supernova identification efficiency. Methods such as these will be crucial for maintaining a reasonable false positive rate in the automated transient alert pipelines of upcoming projects such as PanSTARRS and LSST.Comment: 25 pages; 6 figures; submitted to Ap

    Angle Tree: Nearest Neighbor Search in High Dimensions with Low Intrinsic Dimensionality

    Full text link
    We propose an extension of tree-based space-partitioning indexing structures for data with low intrinsic dimensionality embedded in a high dimensional space. We call this extension an Angle Tree. Our extension can be applied to both classical kd-trees as well as the more recent rp-trees. The key idea of our approach is to store the angle (the "dihedral angle") between the data region (which is a low dimensional manifold) and the random hyperplane that splits the region (the "splitter"). We show that the dihedral angle can be used to obtain a tight lower bound on the distance between the query point and any point on the opposite side of the splitter. This in turn can be used to efficiently prune the search space. We introduce a novel randomized strategy to efficiently calculate the dihedral angle with a high degree of accuracy. Experiments and analysis on real and synthetic data sets shows that the Angle Tree is the most efficient known indexing structure for nearest neighbor queries in terms of preprocessing and space usage while achieving high accuracy and fast search time.Comment: To be submitted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    High-dimensional approximate nearest neighbor: k-d Generalized Randomized Forests

    Get PDF
    We propose a new data-structure, the generalized randomized kd forest, or kgeraf, for approximate nearest neighbor searching in high dimensions. In particular, we introduce new randomization techniques to specify a set of independently constructed trees where search is performed simultaneously, hence increasing accuracy. We omit backtracking, and we optimize distance computations, thus accelerating queries. We release public domain software geraf and we compare it to existing implementations of state-of-the-art methods including BBD-trees, Locality Sensitive Hashing, randomized kd forests, and product quantization. Experimental results indicate that our method would be the method of choice in dimensions around 1,000, and probably up to 10,000, and pointsets of cardinality up to a few hundred thousands or even one million; this range of inputs is encountered in many critical applications today. For instance, we handle a real dataset of 10610^6 images represented in 960 dimensions with a query time of less than 11sec on average and 90\% responses being true nearest neighbors
    • …
    corecore