4,842 research outputs found

    Random forest explorations for URL classification

    Get PDF
    Phishing is a major concern on the Internet today and many users are falling victim because of criminal’s deceitful tactics. Blacklisting is still the most common defence users have against such phishing websites, but is failing to cope with the increasing number. In recent years, researchers have devised modern ways of detecting such websites using machine learning. One such method is to create machine learnt models of URL features to classify whether URLs are phishing. However, there are varying opinions on what the best approach is for features and algorithms. In this paper, the objective is to evaluate the performance of the Random Forest algorithm using a lexical only dataset. The performance is benchmarked against other machine learning algorithms and additionally against those reported in the literature. Initial results from experiments indicate that the Random Forest algorithm performs the best yielding an 86.9% accuracy

    An empirical evaluation of imbalanced data strategies from a practitioner's point of view

    Full text link
    This research tested the following well known strategies to deal with binary imbalanced data on 82 different real life data sets (sampled to imbalance rates of 5%, 3%, 1%, and 0.1%): class weight, SMOTE, Underbagging, and a baseline (just the base classifier). As base classifiers we used SVM with RBF kernel, random forests, and gradient boosting machines and we measured the quality of the resulting classifier using 6 different metrics (Area under the curve, Accuracy, F-measure, G-mean, Matthew's correlation coefficient and Balanced accuracy). The best strategy strongly depends on the metric used to measure the quality of the classifier. For AUC and accuracy class weight and the baseline perform better; for F-measure and MCC, SMOTE performs better; and for G-mean and balanced accuracy, underbagging

    Fitting Prediction Rule Ensembles with R Package pre

    Get PDF
    Prediction rule ensembles (PREs) are sparse collections of rules, offering highly interpretable regression and classification models. This paper presents the R package pre, which derives PREs through the methodology of Friedman and Popescu (2008). The implementation and functionality of package pre is described and illustrated through application on a dataset on the prediction of depression. Furthermore, accuracy and sparsity of PREs is compared with that of single trees, random forest and lasso regression in four benchmark datasets. Results indicate that pre derives ensembles with predictive accuracy comparable to that of random forests, while using a smaller number of variables for prediction
    • …
    corecore