25,629 research outputs found

    Overview of mathematical approaches used to model bacterial chemotaxis II: bacterial populations

    Get PDF
    We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated

    A mass-structured individual-based model of the chemostat: convergence and simulation

    Get PDF
    We propose a model of chemostat where the bacterial population is individually-based, each bacterium is explicitly represented and has a mass evolving continuously over time. The substrate concentration is represented as a conventional ordinary differential equation. These two components are coupled with the bacterial consumption. Mechanisms acting on the bacteria are explicitly described (growth, division and up-take). Bacteria interact via consumption. We set the exact Monte Carlo simulation algorithm of this model and its mathematical representation as a stochastic process. We prove the convergence of this process to the solution of an integro-differential equation when the population size tends to infinity. Finally, we propose several numerical simulations

    Simultaneous growth of two cancer cell lines evidences variability in growth rates

    Full text link
    Cancer cells co-cultured in vitro reveal unexpected differential growth rates that classical exponential growth models cannot account for. Two non-interacting cell lines were grown in the same culture, and counts of each species were recorded at periodic times. The relative growth of population ratios was found to depend on the initial proportion, in contradiction with the traditional exponential growth model. The proposed explanation is the variability of growth rates for clones inside the same cell line. This leads to a log-quadratic growth model that provides both a theoretical explanation to the phenomenon that was observed, and a better fit to our growth data

    Active Brownian Particles. From Individual to Collective Stochastic Dynamics

    Full text link
    We review theoretical models of individual motility as well as collective dynamics and pattern formation of active particles. We focus on simple models of active dynamics with a particular emphasis on nonlinear and stochastic dynamics of such self-propelled entities in the framework of statistical mechanics. Examples of such active units in complex physico-chemical and biological systems are chemically powered nano-rods, localized patterns in reaction-diffusion system, motile cells or macroscopic animals. Based on the description of individual motion of point-like active particles by stochastic differential equations, we discuss different velocity-dependent friction functions, the impact of various types of fluctuations and calculate characteristic observables such as stationary velocity distributions or diffusion coefficients. Finally, we consider not only the free and confined individual active dynamics but also different types of interaction between active particles. The resulting collective dynamical behavior of large assemblies and aggregates of active units is discussed and an overview over some recent results on spatiotemporal pattern formation in such systems is given.Comment: 161 pages, Review, Eur Phys J Special-Topics, accepte

    A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami

    Full text link
    The present paper discusses the use of modified Lotka-Volterra equations in order to stochastically simulate the behaviour of Listeria monocytogenes and Lactic Acid Bacteria (LAB) during the fermentation period (168 h) of a typical Sicilian salami. For this purpose, the differential equation system is set considering T, pH and aw as stochastic variables. Each of them is governed by dynamics that involve a deterministic linear decrease as a function of the time t and an "additive noise" term which instantaneously mimics the fluctuations of T, pH and aw. The choice of a suitable parameter accounting for the interaction of LAB on L. monocytogenes as well as the introduction of appropriate noise levels allows to match the observed data, both for the mean growth curves and for the probability distribution of L. monocytogenes concentration at 168 h.Comment: 19 pages, 2 figures, 2 tables. To be published in Eur. Food Res. Techno
    • …
    corecore