176,414 research outputs found

    Cooperative Profit Random Forests With Application in Ocean Front Recognition.

    Get PDF
    Random Forests are powerful classification and regression tools that are commonly applied in machine learning and image processing. In the majority of random classification forests algorithms, the Gini index and the information gain ratio are commonly used for node splitting. However, these two kinds of node-split methods may pay less attention to the intrinsic structure of the attribute variables and fail to find attributes with strong discriminate ability as a group yet weak as individuals. In this paper, we propose an innovative method for splitting the tree nodes based on the cooperative game theory, from which some attributes with good discriminate ability as a group can be learned. This new random forests algorithm is called Cooperative Profit Random Forests (CPRF). Experimental comparisons with several other existing random classification forests algorithms are carried out on several real-world data sets, including remote sensing images. The results show that CPRF outperforms other existing Random Forests algorithms in most cases. In particular, CPRF achieves promising results in ocean front recognition

    Identifikasi Bunga Kertas (Bougenville) Berdasarkan Warna dengan Metode K-Nearest Neighbor (KNN)

    Get PDF
    In this study, the process of determining the type of data was carried out. Bougenville flowers or commonly referred to as paper flowers are ornamental plants whose existence is quite popular among the public and is widespread in various regions in Indonesia. The data collected for this research are image files in Portable Network Graphics (PNG) format which were obtained using a digital camera. The image that becomes the input is the image of Bunga Bougenville. The sample data used are 3 data on each image sample, with each having 3 attributes, namely red, green, blue. The dataset is the result of image extraction which will be a data source for fruit image classification using the K-Nearest Neighbor method. As for the results of testing the K-Nearest Neighbor method in data classification. The author's test uses variations in the K value of K-Nearest Neighbor 3,4,5,6,7,8,9. Has a very good percentage of accuracy compared to only K-NN. The test results show the K-Nearest Neighbor method in data classification has a good percentage accuracy when using random data. The percentage of variation in the value of K K-Nearest Neighbor 3,4,5,6,7,8,9 has a percentage of 100%.  Keywords : K-Nearest Neighbor, Paper Flowers (Bougenville

    Remote Sensing Image Classification Using Attribute Filters Defined over the Tree of Shapes

    Get PDF
    International audience—Remotely sensed images with very high spatial resolution provide a detailed representation of the surveyed scene with a geometrical resolution that at the present can be up to 30 cm (WorldView-3). A set of powerful image processing operators have been defined in the mathematical morphology framework. Among those, connected operators (e.g., attribute filters) have proven their effectiveness in processing very high resolution images. Attribute filters are based on attributes which can be efficiently implemented on tree-based image representations. In this work, we considered the definition of min, max, direct and subtractive filter rules for the computation of attribute filters over the tree of shapes representation. We study their performance on the classification of remotely sensed images. We compare the classification results over the tree of shapes with the results obtained when the same rules are applied on the component trees. The random forest is used as a baseline classifier and the experiments are conducted using multispectral data sets acquired by QuickBird and IKONOS sensors over urban areas

    Why do These Match? Explaining the Behavior of Image Similarity Models

    Full text link
    Explaining a deep learning model can help users understand its behavior and allow researchers to discern its shortcomings. Recent work has primarily focused on explaining models for tasks like image classification or visual question answering. In this paper, we introduce Salient Attributes for Network Explanation (SANE) to explain image similarity models, where a model's output is a score measuring the similarity of two inputs rather than a classification score. In this task, an explanation depends on both of the input images, so standard methods do not apply. Our SANE explanations pairs a saliency map identifying important image regions with an attribute that best explains the match. We find that our explanations provide additional information not typically captured by saliency maps alone, and can also improve performance on the classic task of attribute recognition. Our approach's ability to generalize is demonstrated on two datasets from diverse domains, Polyvore Outfits and Animals with Attributes 2. Code available at: https://github.com/VisionLearningGroup/SANEComment: Accepted at ECCV 202
    corecore