92,939 research outputs found

    Random assignment with multi-unit demands

    Full text link
    We consider the multi-unit random assignment problem in which agents express preferences over objects and objects are allocated to agents randomly based on the preferences. The most well-established preference relation to compare random allocations of objects is stochastic dominance (SD) which also leads to corresponding notions of envy-freeness, efficiency, and weak strategyproofness. We show that there exists no rule that is anonymous, neutral, efficient and weak strategyproof. For single-unit random assignment, we show that there exists no rule that is anonymous, neutral, efficient and weak group-strategyproof. We then study a generalization of the PS (probabilistic serial) rule called multi-unit-eating PS and prove that multi-unit-eating PS satisfies envy-freeness, weak strategyproofness, and unanimity.Comment: 17 page

    Allocation of Heterogeneous Resources of an IoT Device to Flexible Services

    Full text link
    Internet of Things (IoT) devices can be equipped with multiple heterogeneous network interfaces. An overwhelmingly large amount of services may demand some or all of these interfaces' available resources. Herein, we present a precise mathematical formulation of assigning services to interfaces with heterogeneous resources in one or more rounds. For reasonable instance sizes, the presented formulation produces optimal solutions for this computationally hard problem. We prove the NP-Completeness of the problem and develop two algorithms to approximate the optimal solution for big instance sizes. The first algorithm allocates the most demanding service requirements first, considering the average cost of interfaces resources. The second one calculates the demanding resource shares and allocates the most demanding of them first by choosing randomly among equally demanding shares. Finally, we provide simulation results giving insight into services splitting over different interfaces for both cases.Comment: IEEE Internet of Things Journa

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Distribution planning in a weather-dependent scenario with stochastic travel times: a simheuristics approach

    Get PDF
    In real-life logistics, distribution plans might be affected by weather conditions (rain, snow, and fog), since they might have a significant effect on traveling times and, therefore, on total distribution costs. In this paper, the distribution problem is modeled as a multi-depot vehicle routing problem with stochastic traveling times. These traveling times are not only stochastic in nature but the specific probability distribution used to model them depends on the particular weather conditions on the delivery day. In order to solve the aforementioned problem, a simheuristic approach combining simulation within a biased-randomized heuristic framework is proposed. As the computational experiments will show, our simulation-optimization algorithm is able to provide high-quality solutions to this NP-hard problem in short computing times even for large-scale instances. From a managerial perspective, such a tool can be very useful in practical applications since it helps to increase the efficiency of the logistics and transportation operations.Peer ReviewedPostprint (published version

    Dynamic Multi-Vehicle Routing with Multiple Classes of Demands

    Full text link
    In this paper we study a dynamic vehicle routing problem in which there are multiple vehicles and multiple classes of demands. Demands of each class arrive in the environment randomly over time and require a random amount of on-site service that is characteristic of the class. To service a demand, one of the vehicles must travel to the demand location and remain there for the required on-site service time. The quality of service provided to each class is given by the expected delay between the arrival of a demand in the class, and that demand's service completion. The goal is to design a routing policy for the service vehicles which minimizes a convex combination of the delays for each class. First, we provide a lower bound on the achievable values of the convex combination of delays. Then, we propose a novel routing policy and analyze its performance under heavy load conditions (i.e., when the fraction of time the service vehicles spend performing on-site service approaches one). The policy performs within a constant factor of the lower bound (and thus the optimal), where the constant depends only on the number of classes, and is independent of the number of vehicles, the arrival rates of demands, the on-site service times, and the convex combination coefficients.Comment: Extended version of paper presented in American Control Conference 200

    Online Assignment Algorithms for Dynamic Bipartite Graphs

    Full text link
    This paper analyzes the problem of assigning weights to edges incrementally in a dynamic complete bipartite graph consisting of producer and consumer nodes. The objective is to minimize the overall cost while satisfying certain constraints. The cost and constraints are functions of attributes of the edges, nodes and online service requests. Novelty of this work is that it models real-time distributed resource allocation using an approach to solve this theoretical problem. This paper studies variants of this assignment problem where the edges, producers and consumers can disappear and reappear or their attributes can change over time. Primal-Dual algorithms are used for solving these problems and their competitive ratios are evaluated

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    Distributed Channel Assignment in Cognitive Radio Networks: Stable Matching and Walrasian Equilibrium

    Full text link
    We consider a set of secondary transmitter-receiver pairs in a cognitive radio setting. Based on channel sensing and access performances, we consider the problem of assigning channels orthogonally to secondary users through distributed coordination and cooperation algorithms. Two economic models are applied for this purpose: matching markets and competitive markets. In the matching market model, secondary users and channels build two agent sets. We implement a stable matching algorithm in which each secondary user, based on his achievable rate, proposes to the coordinator to be matched with desirable channels. The coordinator accepts or rejects the proposals based on the channel preferences which depend on interference from the secondary user. The coordination algorithm is of low complexity and can adapt to network dynamics. In the competitive market model, channels are associated with prices and secondary users are endowed with monetary budget. Each secondary user, based on his utility function and current channel prices, demands a set of channels. A Walrasian equilibrium maximizes the sum utility and equates the channel demand to their supply. We prove the existence of Walrasian equilibrium and propose a cooperative mechanism to reach it. The performance and complexity of the proposed solutions are illustrated by numerical simulations.Comment: submitted to IEEE Transactions on Wireless Communicaitons, 13 pages, 10 figures, 4 table
    corecore