122 research outputs found

    Facilitating Graph Neural Networks with Random Walk on Simplicial Complexes

    Full text link
    Node-level random walk has been widely used to improve Graph Neural Networks. However, there is limited attention to random walk on edge and, more generally, on kk-simplices. This paper systematically analyzes how random walk on different orders of simplicial complexes (SC) facilitates GNNs in their theoretical expressivity. First, on 00-simplices or node level, we establish a connection between existing positional encoding (PE) and structure encoding (SE) methods through the bridge of random walk. Second, on 11-simplices or edge level, we bridge edge-level random walk and Hodge 11-Laplacians and design corresponding edge PE respectively. In the spatial domain, we directly make use of edge level random walk to construct EdgeRWSE. Based on the spectral analysis of Hodge 11-Laplcians, we propose Hodge1Lap, a permutation equivariant and expressive edge-level positional encoding. Third, we generalize our theory to random walk on higher-order simplices and propose the general principle to design PE on simplices based on random walk and Hodge Laplacians. Inter-level random walk is also introduced to unify a wide range of simplicial networks. Extensive experiments verify the effectiveness of our random walk-based methods.Comment: Accepted by NeurIPS 202

    Isoperimetric Inequalities in Simplicial Complexes

    Full text link
    In graph theory there are intimate connections between the expansion properties of a graph and the spectrum of its Laplacian. In this paper we define a notion of combinatorial expansion for simplicial complexes of general dimension, and prove that similar connections exist between the combinatorial expansion of a complex, and the spectrum of the high dimensional Laplacian defined by Eckmann. In particular, we present a Cheeger-type inequality, and a high-dimensional Expander Mixing Lemma. As a corollary, using the work of Pach, we obtain a connection between spectral properties of complexes and Gromov's notion of geometric overlap. Using the work of Gunder and Wagner, we give an estimate for the combinatorial expansion and geometric overlap of random Linial-Meshulam complexes

    Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space

    Full text link
    This paper focuses on devising graph signal processing tools for the treatment of data defined on the edges of a graph. We first show that conventional tools from graph signal processing may not be suitable for the analysis of such signals. More specifically, we discuss how the underlying notion of a `smooth signal' inherited from (the typically considered variants of) the graph Laplacian are not suitable when dealing with edge signals that encode a notion of flow. To overcome this limitation we introduce a class of filters based on the Edge-Laplacian, a special case of the Hodge-Laplacian for simplicial complexes of order one. We demonstrate how this Edge-Laplacian leads to low-pass filters that enforce (approximate) flow-conservation in the processed signals. Moreover, we show how these new filters can be combined with more classical Laplacian-based processing methods on the line-graph. Finally, we illustrate the developed tools by denoising synthetic traffic flows on the London street network.Comment: 5 pages, 2 figur
    corecore