4 research outputs found

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area

    Panchromatic and multispectral image fusion for remote sensing and earth observation: Concepts, taxonomy, literature review, evaluation methodologies and challenges ahead

    Get PDF
    Panchromatic and multispectral image fusion, termed pan-sharpening, is to merge the spatial and spectral information of the source images into a fused one, which has a higher spatial and spectral resolution and is more reliable for downstream tasks compared with any of the source images. It has been widely applied to image interpretation and pre-processing of various applications. A large number of methods have been proposed to achieve better fusion results by considering the spatial and spectral relationships among panchromatic and multispectral images. In recent years, the fast development of artificial intelligence (AI) and deep learning (DL) has significantly enhanced the development of pan-sharpening techniques. However, this field lacks a comprehensive overview of recent advances boosted by the rise of AI and DL. This paper provides a comprehensive review of a variety of pan-sharpening methods that adopt four different paradigms, i.e., component substitution, multiresolution analysis, degradation model, and deep neural networks. As an important aspect of pan-sharpening, the evaluation of the fused image is also outlined to present various assessment methods in terms of reduced-resolution and full-resolution quality measurement. Then, we conclude this paper by discussing the existing limitations, difficulties, and challenges of pan-sharpening techniques, datasets, and quality assessment. In addition, the survey summarizes the development trends in these areas, which provide useful methodological practices for researchers and professionals. Finally, the developments in pan-sharpening are summarized in the conclusion part. The aim of the survey is to serve as a referential starting point for newcomers and a common point of agreement around the research directions to be followed in this exciting area

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore