693 research outputs found

    Learning Social Image Embedding with Deep Multimodal Attention Networks

    Full text link
    Learning social media data embedding by deep models has attracted extensive research interest as well as boomed a lot of applications, such as link prediction, classification, and cross-modal search. However, for social images which contain both link information and multimodal contents (e.g., text description, and visual content), simply employing the embedding learnt from network structure or data content results in sub-optimal social image representation. In this paper, we propose a novel social image embedding approach called Deep Multimodal Attention Networks (DMAN), which employs a deep model to jointly embed multimodal contents and link information. Specifically, to effectively capture the correlations between multimodal contents, we propose a multimodal attention network to encode the fine-granularity relation between image regions and textual words. To leverage the network structure for embedding learning, a novel Siamese-Triplet neural network is proposed to model the links among images. With the joint deep model, the learnt embedding can capture both the multimodal contents and the nonlinear network information. Extensive experiments are conducted to investigate the effectiveness of our approach in the applications of multi-label classification and cross-modal search. Compared to state-of-the-art image embeddings, our proposed DMAN achieves significant improvement in the tasks of multi-label classification and cross-modal search

    Reachability Analysis of Graph Modelled Collections

    Get PDF
    This paper is concerned with potential recall in multimodal information retrieval in graph-based models. We provide a framework to leverage individuality and combination of features of different modalities through our formulation of faceted search. We employ a potential recall analysis on a test collection to gain insight on the corpus and further highlight the role of multiple facets, relations between the objects, and semantic links in recall improvement. We conduct the experiments on a multimodal dataset containing approximately 400,000 documents and images. We demonstrate that leveraging multiple facets increases most notably the recall for very hard topics by up to 316%

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility

    Mobility mining for time-dependent urban network modeling

    Get PDF
    170 p.Mobility planning, monitoring and analysis in such a complex ecosystem as a city are very challenging.Our contributions are expected to be a small step forward towards a more integrated vision of mobilitymanagement. The main hypothesis behind this thesis is that the transportation offer and the mobilitydemand are greatly coupled, and thus, both need to be thoroughly and consistently represented in a digitalmanner so as to enable good quality data-driven advanced analysis. Data-driven analytics solutions relyon measurements. However, sensors do only provide a measure of movements that have already occurred(and associated magnitudes, such as vehicles per hour). For a movement to happen there are two mainrequirements: i) the demand (the need or interest) and ii) the offer (the feasibility and resources). Inaddition, for good measurement, the sensor needs to be located at an adequate location and be able tocollect data at the right moment. All this information needs to be digitalised accordingly in order to applyadvanced data analytic methods and take advantage of good digital transportation resource representation.Our main contributions, focused on mobility data mining over urban transportation networks, can besummarised in three groups. The first group consists of a comprehensive description of a digitalmultimodal transport infrastructure representation from global and local perspectives. The second groupis oriented towards matching diverse sensor data onto the transportation network representation,including a quantitative analysis of map-matching algorithms. The final group of contributions covers theprediction of short-term demand based on various measures of urban mobility

    The State of the Art in Multilayer Network Visualization

    Get PDF
    Modelling relationship between entities in real-world systems with a simple graph is a standard approach. However, realityis better embraced as several interdependent subsystems (or layers). Recently, the concept of a multilayer network model hasemerged from the field of complex systems. This model can be applied to a wide range of real-world data sets. Examples ofmultilayer networks can be found in the domains of life sciences, sociology, digital humanities and more. Within the domainof graph visualization, there are many systems which visualize data sets having many characteristics of multilayer graphs.This report provides a state of the art and a structured analysis of contemporary multilayer network visualization, not only forresearchers in visualization, but also for those who aim to visualize multilayer networks in the domain of complex systems, as wellas those developing systems across application domains. We have explored the visualization literature to survey visualizationtechniques suitable for multilayer graph visualization, as well as tools, tasks and analytic techniques from within applicationdomains. This report also identifies the outstanding challenges for multilayer graph visualization and suggests future researchdirections for addressing them
    • …
    corecore