21,496 research outputs found

    Non-Conservative Diffusion and its Application to Social Network Analysis

    Full text link
    The random walk is fundamental to modeling dynamic processes on networks. Metrics based on the random walk have been used in many applications from image processing to Web page ranking. However, how appropriate are random walks to modeling and analyzing social networks? We argue that unlike a random walk, which conserves the quantity diffusing on a network, many interesting social phenomena, such as the spread of information or disease on a social network, are fundamentally non-conservative. When an individual infects her neighbor with a virus, the total amount of infection increases. We classify diffusion processes as conservative and non-conservative and show how these differences impact the choice of metrics used for network analysis, as well as our understanding of network structure and behavior. We show that Alpha-Centrality, which mathematically describes non-conservative diffusion, leads to new insights into the behavior of spreading processes on networks. We give a scalable approximate algorithm for computing the Alpha-Centrality in a massive graph. We validate our approach on real-world online social networks of Digg. We show that a non-conservative metric, such as Alpha-Centrality, produces better agreement with empirical measure of influence than conservative metrics, such as PageRank. We hope that our investigation will inspire further exploration into the realms of conservative and non-conservative metrics in social network analysis

    Enhancing community detection using a network weighting strategy

    Full text link
    A community within a network is a group of vertices densely connected to each other but less connected to the vertices outside. The problem of detecting communities in large networks plays a key role in a wide range of research areas, e.g. Computer Science, Biology and Sociology. Most of the existing algorithms to find communities count on the topological features of the network and often do not scale well on large, real-life instances. In this article we propose a strategy to enhance existing community detection algorithms by adding a pre-processing step in which edges are weighted according to their centrality w.r.t. the network topology. In our approach, the centrality of an edge reflects its contribute to making arbitrary graph tranversals, i.e., spreading messages over the network, as short as possible. Our strategy is able to effectively complements information about network topology and it can be used as an additional tool to enhance community detection. The computation of edge centralities is carried out by performing multiple random walks of bounded length on the network. Our method makes the computation of edge centralities feasible also on large-scale networks. It has been tested in conjunction with three state-of-the-art community detection algorithms, namely the Louvain method, COPRA and OSLOM. Experimental results show that our method raises the accuracy of existing algorithms both on synthetic and real-life datasets.Comment: 28 pages, 2 figure
    • …
    corecore