14,316 research outputs found

    On the Sample Complexity of Predictive Sparse Coding

    Full text link
    The goal of predictive sparse coding is to learn a representation of examples as sparse linear combinations of elements from a dictionary, such that a learned hypothesis linear in the new representation performs well on a predictive task. Predictive sparse coding algorithms recently have demonstrated impressive performance on a variety of supervised tasks, but their generalization properties have not been studied. We establish the first generalization error bounds for predictive sparse coding, covering two settings: 1) the overcomplete setting, where the number of features k exceeds the original dimensionality d; and 2) the high or infinite-dimensional setting, where only dimension-free bounds are useful. Both learning bounds intimately depend on stability properties of the learned sparse encoder, as measured on the training sample. Consequently, we first present a fundamental stability result for the LASSO, a result characterizing the stability of the sparse codes with respect to perturbations to the dictionary. In the overcomplete setting, we present an estimation error bound that decays as \tilde{O}(sqrt(d k/m)) with respect to d and k. In the high or infinite-dimensional setting, we show a dimension-free bound that is \tilde{O}(sqrt(k^2 s / m)) with respect to k and s, where s is an upper bound on the number of non-zeros in the sparse code for any training data point.Comment: Sparse Coding Stability Theorem from version 1 has been relaxed considerably using a new notion of coding margin. Old Sparse Coding Stability Theorem still in new version, now as Theorem 2. Presentation of all proofs simplified/improved considerably. Paper reorganized. Empirical analysis showing new coding margin is non-trivial on real dataset

    Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization

    Full text link
    Relative to the large literature on upper bounds on complexity of convex optimization, lesser attention has been paid to the fundamental hardness of these problems. Given the extensive use of convex optimization in machine learning and statistics, gaining an understanding of these complexity-theoretic issues is important. In this paper, we study the complexity of stochastic convex optimization in an oracle model of computation. We improve upon known results and obtain tight minimax complexity estimates for various function classes
    • …
    corecore