4,730 research outputs found

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Migration as Submodular Optimization

    Full text link
    Migration presents sweeping societal challenges that have recently attracted significant attention from the scientific community. One of the prominent approaches that have been suggested employs optimization and machine learning to match migrants to localities in a way that maximizes the expected number of migrants who find employment. However, it relies on a strong additivity assumption that, we argue, does not hold in practice, due to competition effects; we propose to enhance the data-driven approach by explicitly optimizing for these effects. Specifically, we cast our problem as the maximization of an approximately submodular function subject to matroid constraints, and prove that the worst-case guarantees given by the classic greedy algorithm extend to this setting. We then present three different models for competition effects, and show that they all give rise to submodular objectives. Finally, we demonstrate via simulations that our approach leads to significant gains across the board.Comment: Simulation code is available at https://github.com/pgoelz/migration
    • …
    corecore