19 research outputs found

    Diversity creation methods: a survey and categorisation

    Get PDF

    Convolutional and Deep Learning based techniques for Time Series Ordinal Classification

    Full text link
    Time Series Classification (TSC) covers the supervised learning problem where input data is provided in the form of series of values observed through repeated measurements over time, and whose objective is to predict the category to which they belong. When the class values are ordinal, classifiers that take this into account can perform better than nominal classifiers. Time Series Ordinal Classification (TSOC) is the field covering this gap, yet unexplored in the literature. There are a wide range of time series problems showing an ordered label structure, and TSC techniques that ignore the order relationship discard useful information. Hence, this paper presents a first benchmarking of TSOC methodologies, exploiting the ordering of the target labels to boost the performance of current TSC state-of-the-art. Both convolutional- and deep learning-based methodologies (among the best performing alternatives for nominal TSC) are adapted for TSOC. For the experiments, a selection of 18 ordinal problems from two well-known archives has been made. In this way, this paper contributes to the establishment of the state-of-the-art in TSOC. The results obtained by ordinal versions are found to be significantly better than current nominal TSC techniques in terms of ordinal performance metrics, outlining the importance of considering the ordering of the labels when dealing with this kind of problems.Comment: 13 pages, 9 figures, 3 table

    Towards uncertainty-aware and label-efficient machine learning of human expressive behaviour

    Get PDF
    The ability to recognise emotional expressions from non-verbal behaviour plays a key role in human-human interaction. Endowing machines with the same ability is critical to enriching human-computer interaction. Despite receiving widespread attention so far, human-level automatic recognition of affective expressions is still an elusive task for machines. Towards improving the current state of machine learning methods applied to affect recognition, this thesis identifies two challenges: label ambiguity and label scarcity. Firstly, this thesis notes that it is difficult to establish a clear one-to-one mapping between inputs (face images or speech segments) and their target emotion labels, considering that emotion perception is inherently subjective. As a result, the problem of label ambiguity naturally arises in the manual annotations of affect. Ignoring this fundamental problem, most existing affect recognition methods implicitly assume a one-to-one input-target mapping and use deterministic function learning. In contrast, this thesis proposes to learn non-deterministic functions based on uncertainty-aware probabilistic models, as they can naturally accommodate the one-to-many input-target mapping. Besides improving the affect recognition performance, the proposed uncertainty-aware models in this thesis demonstrate three important applications: adaptive multimodal affect fusion, human-in-the-loop learning of affect, and improved performance on downstream behavioural analysis tasks like personality traits estimation. Secondly, this thesis aims to address the challenge of scarcity of affect labelled datasets, caused by the cumbersome and time-consuming nature of the affect annotation process. To this end, this thesis notes that audio and visual feature encoders used in the existing models are label-inefficient i.e. learning them requires large amounts of labelled training data. As a solution, this thesis proposes to pre-train the feature encoders using unlabelled data to make them more label-efficient i.e. using as few labelled training examples as possible to achieve good emotion recognition performance. A novel self-supervised pre-training method is proposed in this thesis by posing hand-engineered emotion features as task-specific representation learning priors. By leveraging large amounts of unlabelled audiovisual data, the proposed self-supervised pre-training method demonstrates much better label efficiency compared to the commonly employed pre-training methods

    Towards uncertainty-aware and label-efficient machine learning of human expressive behaviour

    Get PDF
    The ability to recognise emotional expressions from non-verbal behaviour plays a key role in human-human interaction. Endowing machines with the same ability is critical to enriching human-computer interaction. Despite receiving widespread attention so far, human-level automatic recognition of affective expressions is still an elusive task for machines. Towards improving the current state of machine learning methods applied to affect recognition, this thesis identifies two challenges: label ambiguity and label scarcity. Firstly, this thesis notes that it is difficult to establish a clear one-to-one mapping between inputs (face images or speech segments) and their target emotion labels, considering that emotion perception is inherently subjective. As a result, the problem of label ambiguity naturally arises in the manual annotations of affect. Ignoring this fundamental problem, most existing affect recognition methods implicitly assume a one-to-one input-target mapping and use deterministic function learning. In contrast, this thesis proposes to learn non-deterministic functions based on uncertainty-aware probabilistic models, as they can naturally accommodate the one-to-many input-target mapping. Besides improving the affect recognition performance, the proposed uncertainty-aware models in this thesis demonstrate three important applications: adaptive multimodal affect fusion, human-in-the-loop learning of affect, and improved performance on downstream behavioural analysis tasks like personality traits estimation. Secondly, this thesis aims to address the challenge of scarcity of affect labelled datasets, caused by the cumbersome and time-consuming nature of the affect annotation process. To this end, this thesis notes that audio and visual feature encoders used in the existing models are label-inefficient i.e. learning them requires large amounts of labelled training data. As a solution, this thesis proposes to pre-train the feature encoders using unlabelled data to make them more label-efficient i.e. using as few labelled training examples as possible to achieve good emotion recognition performance. A novel self-supervised pre-training method is proposed in this thesis by posing hand-engineered emotion features as task-specific representation learning priors. By leveraging large amounts of unlabelled audiovisual data, the proposed self-supervised pre-training method demonstrates much better label efficiency compared to the commonly employed pre-training methods

    An Ordinal Approach to Affective Computing

    Full text link
    Both depression prediction and emotion recognition systems are often based on ordinal ground truth due to subjectively annotated datasets. Yet, both have so far been posed as classification or regression problems. These naive approaches have fundamental issues because they are not focused on ordering, unlike ordinal regression, which is the most appropriate for truly ordinal ground truth. Ordinal regression to date offers comparatively fewer, more limited methods when compared with other branches in machine learning, and its usage has been limited to specific research domains. Accordingly, this thesis presents investigations into ordinal approaches for affective computing by describing a consistent framework to understand all ordinal system designs, proposing ordinal systems for large datasets, and introducing tools and principles to select suitable system designs and evaluation methods. First, three learning approaches are compared using the support vector framework to establish the empirical advantages of ordinal regression, which is lacking from the current literature. Results on depression and emotion corpora indicate that ordinal regression with proper tuning can improve existing depression and emotion systems. Ordinal logistic regression (OLR), which is an extension of logistic regression for ordinal scales, contributes to a number of model structures, from which the best structure must be chosen. Exploiting the newly proposed computationally efficient greedy algorithm for model structure selection (GREP), OLR outperformed or was comparable with state-of-the-art depression systems on two benchmark depression speech datasets. Deep learning has dominated many affective computing fields, and hence ordinal deep learning is an attractive prospect. However, it is under-studied even in the machine learning literature, which motivates an in-depth analysis of appropriate network architectures and loss functions. One of the significant outcomes of this analysis is the introduction of RankCNet, a novel ordinal network which utilises a surrogate loss function of rank correlation. Not only the modelling algorithm but the choice of evaluation measure depends on the nature of the ground truth. Rank correlation measures, which are sensitive to ordering, are more apt for ordinal problems than common classification or regression measures that ignore ordering information. Although rank-based evaluation for ordinal problems is not new, so far in affective computing, ordinality of the ground truth has been widely ignored during evaluation. Hence, a systematic analysis in the affective computing context is presented, to provide clarity and encourage careful choice of evaluation measures. Another contribution is a neural network framework with a novel multi-term loss function to assess the ordinality of ordinally-annotated datasets, which can guide the selection of suitable learning and evaluation methods. Experiments on multiple synthetic and affective speech datasets reveal that the proposed system can offer reliable and meaningful predictions about the ordinality of a given dataset. Overall, the novel contributions and findings presented in this thesis not only improve prediction accuracy but also encourage future research towards ordinal affective computing: a different paradigm, but often the most appropriate

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    Monitoring data streams

    Get PDF
    Stream monitoring is concerned with analyzing data that is represented in the form of infinite streams. This field has gained prominence in recent years, as streaming data is generated in increasing volume and dimension in a variety of areas. It finds application in connection with monitoring industrial sensors, "smart" technology like smart houses and smart cars, wearable devices used for medical and physiological monitoring, but also in environmental surveillance or finance. However, stream monitoring is a challenging task due to the diverse and changing nature of the streaming data, its high volume and high dimensionality with thousands of sensors producing streams with millions of measurements over short time spans. Automated, scalable and efficient analysis of these streams can help to keep track of important events, highlight relevant aspects and provide better insights into the monitored system. In this thesis, we propose techniques adapted to these tasks in supervised and unsupervised settings, in particular Stream Classification and Stream Dependency Monitoring. After a motivating introduction, we introduce concepts related to streaming data and discuss technological frameworks that have emerged to deal with streaming data in the second chapter of this thesis. We introduce the notion of information theoretical entropy as a useful basis for data monitoring in the third chapter. In the second part of the thesis, we present Probabilistic Hoeffding Trees, a novel approach towards stream classification. We will show how probabilistic learning greatly improves the flexibility of decision trees and their ability to adapt to changes in data streams. The general technique is applicable to a variety of classification models and fast to compute without significantly greater memory cost compared to regular Hoeffding Trees. We show that our technique achieves better or on-par results to current state-of-the-art tree classification models on a variety of large, synthetic and real life data sets. In the third part of the thesis, we concentrate on unsupervised monitoring of data streams. We will use mutual information as entropic measure to identify the most important relationships in a monitored system. By using the powerful concept of mutual information we can, first, capture relevant aspects in a great variety of data sources with different underlying concepts and possible relationships and, second, analyze theoretical and computational complexity. We present the MID and DIMID algorithms. They perform extremely efficient on high dimensional data streams and provide accurate results, outperforming state-of-the-art algorithms for dependency monitoring. In the fourth part of this thesis, we introduce delayed relationships as a further feature in the dependency analysis. In reality, the phenomena monitored by e.g. some type of sensor might depend on another, but measurable effects can be delayed. This delay might be due to technical reasons, i.e. different stream processing speeds, or because the effects actually appear delayed over time. We present Loglag, the first algorithm that monitors dependency with respect to an optimal delay. It utilizes several approximation techniques to achieve competitive resource requirements. We demonstrate its scalability and accuracy on real world data, and also give theoretical guarantees to its accuracy

    From sequences to cognitive structures : neurocomputational mechanisms

    Get PDF
    Ph. D. Thesis.Understanding how the brain forms representations of structured information distributed in time is a challenging neuroscientific endeavour, necessitating computationally and neurobiologically informed study. Human neuroimaging evidence demonstrates engagement of a fronto-temporal network, including ventrolateral prefrontal cortex (vlPFC), during language comprehension. Corresponding regions are engaged when processing dependencies between word-like items in Artificial Grammar (AG) paradigms. However, the neurocomputations supporting dependency processing and sequential structure-building are poorly understood. This work aimed to clarify these processes in humans, integrating behavioural, electrophysiological and computational evidence. I devised a novel auditory AG task to assess simultaneous learning of dependencies between adjacent and non-adjacent items, incorporating learning aids including prosody, feedback, delineated sequence boundaries, staged pre-exposure, and variable intervening items. Behavioural data obtained in 50 healthy adults revealed strongly bimodal performance despite these cues. Notably, however, reaction times revealed sensitivity to the grammar even in low performers. Behavioural and intracranial electrode data was subsequently obtained in 12 neurosurgical patients performing this task. Despite chance behavioural performance, time- and time-frequency domain electrophysiological analysis revealed selective responsiveness to sequence grammaticality in regions including vlPFC. I developed a novel neurocomputational model (VS-BIND: “Vector-symbolic Sequencing of Binding INstantiating Dependencies”), triangulating evidence to clarify putative mechanisms in the fronto-temporal language network. I then undertook multivariate analyses on the AG task neural data, revealing responses compatible with the presence of ordinal codes in vlPFC, consistent with VS-BIND. I also developed a novel method of causal analysis on multivariate patterns, representational Granger causality, capable of detecting flow of distinct representations within the brain. This alluded to top-down transmission of syntactic predictions during the AG task, from vlPFC to auditory cortex, largely in the opposite direction to stimulus encodings, consistent with predictive coding accounts. It finally suggested roles for the temporoparietal junction and frontal operculum during grammaticality processing, congruent with prior literature. This work provides novel insights into the neurocomputational basis of cognitive structure-building, generating hypotheses for future study, and potentially contributing to AI and translational efforts.Wellcome Trust, European Research Counci
    corecore