320 research outputs found

    Non-remote reference noise cancellation - using reference data in the presence of surface-NMR signals

    Get PDF
    Surface-NMR measurements commonly suffer from low signal-to-noise ratios. In recent years, with the introduction of multi-channel surface-NMR instruments, the technique of remote-reference noise cancellation (RNC) was developed and significantly improved the applicability of surface-NMR. The current formulation of RNC requires a reference loop to be placed a remote distance from the transmitter loop such that no NMR signal is recorded. Reference loops placed at non-remote distances have been envisaged to provide both improved noise cancellation performance and field efficiency; however, the concept has not been previously applied because the theoretical framework was missing. In this paper, the theoretical framework is presented. It is demonstrated that reference loops placed at non-remote distances provide superior noise cancellation performance. Considerations for placing the reference loop relative to the transmitter loop are provided, and the theoretical framework is evaluated based on a semi-synthetic example using real field noise and synthetic surface-NMR data. Š 202

    Magnetocardiography in unshielded environment based on optical magnetometry and adaptive noise cancellation

    Get PDF
    This thesis proposes and demonstrates the concept of a magnetocardiographic system employing an array of optically-pumped quantum magnetometers and an adaptive noise cancellation for heart magnetic field measurement within a magnetically-unshielded environment. Optically-pumped quantum magnetometers are based on the use of the atomic-spin-dependent optical properties of an atomic medium. An Mxconfiguration- based optically-pumped quantum magnetometer employing two sensing cells containing caesium vapour is theoretically described and experimentally developed, and the dependence of its sensitivity and frequency bandwidth upon the light power and the alkali vapour temperature is experimentally demonstrated. Furthermore, the capability of the developed magnetometer of measuring very weak magnetic fields is experimentally demonstrated in a magnetically-unshielded environment. The adaptive noise canceller is based on standard Least-Mean-Squares (LMS) algorithms and on two heuristic optimization techniques, namely, Genetic Algorithms (GA) and Particle Swarm Optimization (PSO). The use of these algorithms is investigated for suppressing the power line generated 50Hz interference and recovering of the weak magnetic heart signals from a much higher electromagnetic environmental noise. Experimental results show that all the algorithms can extract a weak heart signal from a much-stronger magnetic noise, detect the P, QRS, and T heart features and highly suppress the common power line noise component at 50 Hz. Moreover, adaptive noise cancellation based on heuristic algorithms is shown to be more efficient than adaptive noise canceller based on standard or normalised LMS algorithm in heart features detection

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Comparison of resting state functional networks in HIV infected and uninfected children at age 9 years

    Get PDF
    Over 2.5 million children are infected with HIV, the majority of whom reside in Sub-Saharan Africa. Treatment coverage is steadily gaining momentum, reducing mortality and morbidity. Yet little is known about brain development in HIV-infected (HIV+) children who are on highly-active antiretroviral therapy (ART), with viral load suppression from a young age. Here, we use resting state fMRI (rs-fMRI) to examine the impact of HIV and ART on the development of functional networks in 9-year-old vertically HIV-infected children compared to age-matched controls of similar socioeconomic status. We present analyses for a sample of 40 HIV+ (9.2 Âą 0.20 years; 16 males) children from the Children with HIV Early Antiretroviral (CHER) clinical trial (Cotton et al. 2013; Violari et al. 2008) and 24 uninfected (12 exposed; 12 males; 9.6 Âą 0.52 years) controls from an interlinking vaccine trial (Madhi et al. 2010). Scans were performed at the Cape Universities Body Imaging Centre (CUBIC) in Cape Town, South Africa. We investigated HIV-related differences in within- and between-network functional connectivity (FC) using independent component analysis(ICA) and seed-based correlation analysis (SCA). For SCA, seeds were placed in the structural core, in regions implicated in HIV-related between-group differences at age 7 years, and in regions associated with neuropsychological domains impaired in our cohort. In addition, we evaluated associations of past and present immune health measures with within-network connectivity using ICA. We found no HIV-related intra-network FC differences within any ICA-generated RSNs at age 9 years, perhaps as a result of within-network connectivity not being sufficiently robust at this age. We found a positive association of CD4%, both current and in infancy, with functional integration of left lobule 7 into the cerebellum network at age 9 years. Long-term impact of early immune health supports recently-revised policies of commencing ART immediately in HIV+ neonates. ii Compared to uninfected children, HIV+ children had increased FC to several seeds. Firstly, to seeds associated with the planning and visual perception neuropsychological domains. Secondly, to structural core seeds in the extrastriate visual cortex (of the medial visual network) and the right angular gyrus (of the temporoparietal network). Finally, to left paracentral (somatosensory network) and right precuneus (posterior DMN) seeds previously revealing between-group differences at age 7 years. The connections with greater FC in HIV+ children may variously indicate functional recruitment of additional brain capacity, immature excess of short-range connections, and/or immature excess of between-network connections. In conclusion, despite early ART and early virologic suppression, HIV+ children demonstrate instances of abnormal FC at age 9 years. Disruption to visual cortex is marked, consistent with indications from neuropsychological testing that visual perception is disrupted. The profile of HIV- and/or ART-related effects on FC differs considerably between the two ages of 7 and 9 years, but both show characteristics of immature functional organisation compared with age-matched controls

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The MAVEBA Workshop proceedings, held on a biannual basis, collect the scientific papers presented both as oral and poster contributions, during the conference. The main subjects are: development of theoretical and mechanical models as an aid to the study of main phonatory dysfunctions, as well as the biomedical engineering methods for the analysis of voice signals and images, as a support to clinical diagnosis and classification of vocal pathologies

    1-D broadside-radiating leaky-wave antenna based on a numerically synthesized impedance surface

    Get PDF
    A newly-developed deterministic numerical technique for the automated design of metasurface antennas is applied here for the first time to the design of a 1-D printed Leaky-Wave Antenna (LWA) for broadside radiation. The surface impedance synthesis process does not require any a priori knowledge on the impedance pattern, and starts from a mask constraint on the desired far-field and practical bounds on the unit cell impedance values. The designed reactance surface for broadside radiation exhibits a non conventional patterning; this highlights the merit of using an automated design process for a design well known to be challenging for analytical methods. The antenna is physically implemented with an array of metal strips with varying gap widths and simulation results show very good agreement with the predicted performance

    Beam scanning by liquid-crystal biasing in a modified SIW structure

    Get PDF
    A fixed-frequency beam-scanning 1D antenna based on Liquid Crystals (LCs) is designed for application in 2D scanning with lateral alignment. The 2D array environment imposes full decoupling of adjacent 1D antennas, which often conflicts with the LC requirement of DC biasing: the proposed design accommodates both. The LC medium is placed inside a Substrate Integrated Waveguide (SIW) modified to work as a Groove Gap Waveguide, with radiating slots etched on the upper broad wall, that radiates as a Leaky-Wave Antenna (LWA). This allows effective application of the DC bias voltage needed for tuning the LCs. At the same time, the RF field remains laterally confined, enabling the possibility to lay several antennas in parallel and achieve 2D beam scanning. The design is validated by simulation employing the actual properties of a commercial LC medium
    • …
    corecore