427 research outputs found

    S2S-WTV: Seismic Data Noise Attenuation Using Weighted Total Variation Regularized Self-Supervised Learning

    Full text link
    Seismic data often undergoes severe noise due to environmental factors, which seriously affects subsequent applications. Traditional hand-crafted denoisers such as filters and regularizations utilize interpretable domain knowledge to design generalizable denoising techniques, while their representation capacities may be inferior to deep learning denoisers, which can learn complex and representative denoising mappings from abundant training pairs. However, due to the scarcity of high-quality training pairs, deep learning denoisers may sustain some generalization issues over various scenarios. In this work, we propose a self-supervised method that combines the capacities of deep denoiser and the generalization abilities of hand-crafted regularization for seismic data random noise attenuation. Specifically, we leverage the Self2Self (S2S) learning framework with a trace-wise masking strategy for seismic data denoising by solely using the observed noisy data. Parallelly, we suggest the weighted total variation (WTV) to further capture the horizontal local smooth structure of seismic data. Our method, dubbed as S2S-WTV, enjoys both high representation abilities brought from the self-supervised deep network and good generalization abilities of the hand-crafted WTV regularizer and the self-supervised nature. Therefore, our method can more effectively and stably remove the random noise and preserve the details and edges of the clean signal. To tackle the S2S-WTV optimization model, we introduce an alternating direction multiplier method (ADMM)-based algorithm. Extensive experiments on synthetic and field noisy seismic data demonstrate the effectiveness of our method as compared with state-of-the-art traditional and deep learning-based seismic data denoising methods

    Meta-Processing: A robust framework for multi-tasks seismic processing

    Full text link
    Machine learning-based seismic processing models are typically trained separately to perform specific seismic processing tasks (SPTs), and as a result, require plenty of training data. However, preparing training data sets is not trivial, especially for supervised learning (SL). Nevertheless, seismic data of different types and from different regions share generally common features, such as their sinusoidal nature and geometric texture. To learn the shared features, and thus, quickly adapt to various SPTs, we develop a unified paradigm for neural network-based seismic processing, called Meta-Processing, that uses limited training data for meta learning a common network initialization, which offers universal adaptability features. The proposed Meta-Processing framework consists of two stages: meta-training and meta-testing. In the meta-training stage, each SPT is treated as a separate task and the training dataset is divided into support and query sets. Unlike conventional SL methods, here, the neural network (NN) parameters are updated by a bilevel gradient descent from the support set to the query set, iterating through all tasks. In the meta-testing stage, we also utilize limited data to fine-tune the optimized NN parameters in an SL fashion to conduct various SPTs, such as denoising, interpolation, ground-roll attenuation, image enhancement, and velocity estimation, aiming to converge quickly to ideal performance. Comprehensive numerical examples are performed to evaluate the performance of Meta-Processing on both synthetic and field data. The results demonstrate that our method significantly improves the convergence speed and prediction accuracy of the NN

    Generative adversarial networks review in earthquake-related engineering fields

    Get PDF
    Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, and advantageous way to generate reliable synthetic data that represent actual samples' characteristics, providing a handy data augmentation tool. Indeed, in many practical applications, obtaining a significant number of high-quality information is demanding. Data augmentation is generally based on artificial intelligence (AI) and machine learning data-driven models. The DL GAN-based data augmentation approach for generating synthetic seismic signals revolutionized the current data augmentation paradigm. This study delivers a critical state-of-art review, explaining recent research into AI-based GAN synthetic generation of ground motion signals or seismic events, and also with a comprehensive insight into seismic-related geophysical studies. This study may be relevant, especially for the earth and planetary science, geology and seismology, oil and gas exploration, and on the other hand for assessing the seismic response of buildings and infrastructures, seismic detection tasks, and general structural and civil engineering applications. Furthermore, highlighting the strengths and limitations of the current studies on adversarial learning applied to seismology may help to guide research efforts in the next future toward the most promising directions
    • …
    corecore