12 research outputs found

    Correlation length versus gap in frustration-free systems

    Get PDF
    Hastings established exponential decay of correlations for ground states of gapped quantum many-body systems. A ground state of a (geometrically) local Hamiltonian with spectral gap ε has correlation length ξ upper bounded as ξ=O(1/ε). In general this bound cannot be improved. Here we study the scaling of the correlation length as a function of the spectral gap in frustration-free local Hamiltonians, and we prove a tight bound ξ=O(1/√ε) in this setting. This highlights a fundamental difference between frustration-free and frustrated systems near criticality. The result is obtained using an improved version of the combinatorial proof of correlation decay due to Aharonov, Arad, Vazirani, and Landau

    Realistic Area-Law Bound on Entanglement from Exponentially Decaying Correlations

    Full text link
    A remarkable feature of typical ground states of strongly-correlated many-body systems is that the entanglement entropy is not an extensive quantity. In one dimension, there exists a proof that a finite correlation length sets a constant upper-bound on the entanglement entropy, called the area law. However, the known bound exists only in a hypothetical limit, rendering its physical relevance highly questionable. In this paper, we give a simple proof of the area law for entanglement entropy in one dimension under the condition of exponentially decaying correlations. Our proof dramatically reduces the previously known bound on the entanglement entropy, bringing it, for the first time, into a realistic regime. The proof is composed of several simple and straightforward steps based on elementary quantum information tools. We discuss the underlying physical picture, based on a renormalization-like construction underpinning the proof, which transforms the entanglement entropy of a continuous region into a sum of mutual informations in different length scales and the entanglement entropy at the boundary

    Holographic duality from random tensor networks

    Full text link
    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface topologically in a way similar to creation of a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by AdS/CFT duality, our main results define a more general form of bulk-boundary correspondence which could be useful for extending holography to other spacetimes.Comment: 57 pages, 13 figure

    Page curves and typical entanglement in linear optics

    Full text link
    Bosonic Gaussian states are a special class of quantum states in an infinite dimensional Hilbert space that are relevant to universal continuous-variable quantum computation as well as to near-term quantum sampling tasks such as Gaussian Boson Sampling. In this work, we study entanglement within a set of squeezed modes that have been evolved by a random linear optical unitary. We first derive formulas that are asymptotically exact in the number of modes for the R\'enyi-2 Page curve (the average R\'enyi-2 entropy of a subsystem of a pure bosonic Gaussian state) and the corresponding Page correction (the average information of the subsystem) in certain squeezing regimes. We then prove various results on the typicality of entanglement as measured by the R\'enyi-2 entropy by studying its variance. Using the aforementioned results for the R\'enyi-2 entropy, we upper and lower bound the von Neumann entropy Page curve and prove certain regimes of entanglement typicality as measured by the von Neumann entropy. Our main proofs make use of a symmetry property obeyed by the average and the variance of the entropy that dramatically simplifies the averaging over unitaries. In this light, we propose future research directions where this symmetry might also be exploited. We conclude by discussing potential applications of our results and their generalizations to Gaussian Boson Sampling and to illuminating the relationship between entanglement and computational complexity.Comment: 29 pages; 2 figures. Version 2: small updates to match journal versio

    Chaos in quantum channels

    Get PDF
    We study chaos and scrambling in unitary channels by considering their entanglement properties as states. Using out-of-time-order correlation functions to diagnose chaos, we characterize the ability of a channel to process quantum information. We show that the generic decay of such correlators implies that any input subsystem must have near vanishing mutual information with almost all partitions of the output. Additionally, we propose the negativity of the tripartite information of the channel as a general diagnostic of scrambling. This measures the delocalization of information and is closely related to the decay of out-of-time-order correlators. We back up our results with numerics in two non-integrable models and analytic results in a perfect tensor network model of chaotic time evolution. These results show that the butterfly effect in quantum systems implies the information-theoretic definition of scrambling
    corecore