59,248 research outputs found

    Performance Characterization of Random Proximity Sensor Networks

    Get PDF
    In this paper, we characterize the localization performance and connectivity of sensors networks consisting of binary proximity sensors using a random sensor management strategy. The sensors are deployed uniformly at random over an area, and to limit the energy dissipation, each sensor node switches between an active and idle state according to random mechanisms regulated by a birth-and-death stochastic process. We first develop an upper bound for the minimum transmitting range which guarantees connectivity of the active nodes in the network with a desired probability. Then, we derive an analytical formula for predicting the mean-squared localization error of the active nodes when assuming a centroid localization scheme. Simulations are used to verify the theoretical claims for various localization schemes that operate only over connected active nodes

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Bayesian nonparametric sparse VAR models

    Get PDF
    High dimensional vector autoregressive (VAR) models require a large number of parameters to be estimated and may suffer of inferential problems. We propose a new Bayesian nonparametric (BNP) Lasso prior (BNP-Lasso) for high-dimensional VAR models that can improve estimation efficiency and prediction accuracy. Our hierarchical prior overcomes overparametrization and overfitting issues by clustering the VAR coefficients into groups and by shrinking the coefficients of each group toward a common location. Clustering and shrinking effects induced by the BNP-Lasso prior are well suited for the extraction of causal networks from time series, since they account for some stylized facts in real-world networks, which are sparsity, communities structures and heterogeneity in the edges intensity. In order to fully capture the richness of the data and to achieve a better understanding of financial and macroeconomic risk, it is therefore crucial that the model used to extract network accounts for these stylized facts.Comment: Forthcoming in "Journal of Econometrics" ---- Revised Version of the paper "Bayesian nonparametric Seemingly Unrelated Regression Models" ---- Supplementary Material available on reques

    Exchangeable Random Measures for Sparse and Modular Graphs with Overlapping Communities

    Full text link
    We propose a novel statistical model for sparse networks with overlapping community structure. The model is based on representing the graph as an exchangeable point process, and naturally generalizes existing probabilistic models with overlapping block-structure to the sparse regime. Our construction builds on vectors of completely random measures, and has interpretable parameters, each node being assigned a vector representing its level of affiliation to some latent communities. We develop methods for simulating this class of random graphs, as well as to perform posterior inference. We show that the proposed approach can recover interpretable structure from two real-world networks and can handle graphs with thousands of nodes and tens of thousands of edges

    Random consensus protocol in large-scale networks

    Get PDF
    One of the main performance issues for consensus protocols is the convergence speed. In this paper, we focus on the convergence behavior of discrete-time consensus protocols over large-scale sensor networks with uniformly random deployment, which are modelled as Poisson random graphs. Instead of using the random rewiring procedure, we introduce a deterministic principle to locate certain “chosen nodes” in the network and add “virtual” shortcuts among them so that the number of iterations to achieve average consensus drops dramatically. Simulation results are presented to verify the efficiency of this approach. Moreover, a random consensus protocol is proposed, in which virtual shortcuts are implemented by random routes

    A Perfect Sampling Method for Exponential Family Random Graph Models

    Full text link
    Generation of deviates from random graph models with non-trivial edge dependence is an increasingly important problem. Here, we introduce a method which allows perfect sampling from random graph models in exponential family form ("exponential family random graph" models), using a variant of Coupling From The Past. We illustrate the use of the method via an application to the Markov graphs, a family that has been the subject of considerable research. We also show how the method can be applied to a variant of the biased net models, which are not exponentially parameterized.Comment: To appear in the Journal of Mathematical Sociology (accepted version

    Threshold-Controlled Global Cascading in Wireless Sensor Networks

    Full text link
    We investigate cascade dynamics in threshold-controlled (multiplex) propagation on random geometric networks. We find that such local dynamics can serve as an efficient, robust, and reliable prototypical activation protocol in sensor networks in responding to various alarm scenarios. We also consider the same dynamics on a modified network by adding a few long-range communication links, resulting in a small-world network. We find that such construction can further enhance and optimize the speed of the network's response, while keeping energy consumption at a manageable level

    Dynamic Load Balancing Strategies for Graph Applications on GPUs

    Full text link
    Acceleration of graph applications on GPUs has found large interest due to the ubiquitous use of graph processing in various domains. The inherent \textit{irregularity} in graph applications leads to several challenges for parallelization. A key challenge, which we address in this paper, is that of load-imbalance. If the work-assignment to threads uses node-based graph partitioning, it can result in skewed task-distribution, leading to poor load-balance. In contrast, if the work-assignment uses edge-based graph partitioning, the load-balancing is better, but the memory requirement is relatively higher. This makes it unsuitable for large graphs. In this work, we propose three techniques for improved load-balancing of graph applications on GPUs. Each technique brings in unique advantages, and a user may have to employ a specific technique based on the requirement. Using Breadth First Search and Single Source Shortest Paths as our processing kernels, we illustrate the effectiveness of each of the proposed techniques in comparison to the existing node-based and edge-based mechanisms

    Asymptotic properties of random unlabelled block-weighted graphs

    Full text link
    We study the asymptotic shape of random unlabelled graphs subject to certain subcriticality conditions. The graphs are sampled with probability proportional to a product of Boltzmann weights assigned to their 22-connected components. As their number of vertices tends to infinity, we show that they admit the Brownian tree as Gromov--Hausdorff--Prokhorov scaling limit, and converge in a strengthened Benjamini--Schramm sense toward an infinite random graph. We also consider a family of random graphs that are allowed to be disconnected. Here a giant connected component emerges and the small fragments converge without any rescaling towards a finite random limit graph

    Generating random networks with given degree-degree correlations and degree-dependent clustering

    Full text link
    Random networks are widely used to model complex networks and research their properties. In order to get a good approximation of complex networks encountered in various disciplines of science, the ability to tune various statistical properties of random networks is very important. In this manuscript we present an algorithm which is able to construct arbitrarily degree-degree correlated networks with adjustable degree-dependent clustering. We verify the algorithm by using empirical networks as input and describe additionally a simple way to fix a degree-dependent clustering function if degree-degree correlations are given.Comment: 4 pages, 3 figure
    corecore