2,943 research outputs found

    {HyGen}: {G}enerating Random Graphs with Hyperbolic Communities

    No full text

    Generating realistic scaled complex networks

    Get PDF
    Research on generative models is a central project in the emerging field of network science, and it studies how statistical patterns found in real networks could be generated by formal rules. Output from these generative models is then the basis for designing and evaluating computational methods on networks, and for verification and simulation studies. During the last two decades, a variety of models has been proposed with an ultimate goal of achieving comprehensive realism for the generated networks. In this study, we (a) introduce a new generator, termed ReCoN; (b) explore how ReCoN and some existing models can be fitted to an original network to produce a structurally similar replica, (c) use ReCoN to produce networks much larger than the original exemplar, and finally (d) discuss open problems and promising research directions. In a comparative experimental study, we find that ReCoN is often superior to many other state-of-the-art network generation methods. We argue that ReCoN is a scalable and effective tool for modeling a given network while preserving important properties at both micro- and macroscopic scales, and for scaling the exemplar data by orders of magnitude in size.Comment: 26 pages, 13 figures, extended version, a preliminary version of the paper was presented at the 5th International Workshop on Complex Networks and their Application

    Climate Dynamics: A Network-Based Approach for the Analysis of Global Precipitation

    Get PDF
    Precipitation is one of the most important meteorological variables for defining the climate dynamics, but the spatial patterns of precipitation have not been fully investigated yet. The complex network theory, which provides a robust tool to investigate the statistical interdependence of many interacting elements, is used here to analyze the spatial dynamics of annual precipitation over seventy years (1941-2010). The precipitation network is built associating a node to a geographical region, which has a temporal distribution of precipitation, and identifying possible links among nodes through the correlation function. The precipitation network reveals significant spatial variability with barely connected regions, as Eastern China and Japan, and highly connected regions, such as the African Sahel, Eastern Australia and, to a lesser extent, Northern Europe. Sahel and Eastern Australia are remarkably dry regions, where low amounts of rainfall are uniformly distributed on continental scales and small-scale extreme events are rare. As a consequence, the precipitation gradient is low, making these regions well connected on a large spatial scale. On the contrary, the Asiatic South-East is often reached by extreme events such as monsoons, tropical cyclones and heat waves, which can all contribute to reduce the correlation to the short-range scale only. Some patterns emerging between mid-latitude and tropical regions suggest a possible impact of the propagation of planetary waves on precipitation at a global scale. Other links can be qualitatively associated to the atmospheric and oceanic circulation. To analyze the sensitivity of the network to the physical closeness of the nodes, short-term connections are broken. The African Sahel, Eastern Australia and Northern Europe regions again appear as the supernodes of the network, confirming furthermore their long-range connection structure. Almost all North-American and Asian nodes vanish, revealing that extreme events can enhance high precipitation gradients, leading to a systematic absence of long-range patterns

    Algorithms and Software for the Analysis of Large Complex Networks

    Get PDF
    The work presented intersects three main areas, namely graph algorithmics, network science and applied software engineering. Each computational method discussed relates to one of the main tasks of data analysis: to extract structural features from network data, such as methods for community detection; or to transform network data, such as methods to sparsify a network and reduce its size while keeping essential properties; or to realistically model networks through generative models

    Spectral Graph Forge: Graph Generation Targeting Modularity

    Full text link
    Community structure is an important property that captures inhomogeneities common in large networks, and modularity is one of the most widely used metrics for such community structure. In this paper, we introduce a principled methodology, the Spectral Graph Forge, for generating random graphs that preserves community structure from a real network of interest, in terms of modularity. Our approach leverages the fact that the spectral structure of matrix representations of a graph encodes global information about community structure. The Spectral Graph Forge uses a low-rank approximation of the modularity matrix to generate synthetic graphs that match a target modularity within user-selectable degree of accuracy, while allowing other aspects of structure to vary. We show that the Spectral Graph Forge outperforms state-of-the-art techniques in terms of accuracy in targeting the modularity and randomness of the realizations, while also preserving other local structural properties and node attributes. We discuss extensions of the Spectral Graph Forge to target other properties beyond modularity, and its applications to anonymization
    • …
    corecore