7,452 research outputs found

    Random trees between two walls: Exact partition function

    Full text link
    We derive the exact partition function for a discrete model of random trees embedded in a one-dimensional space. These trees have vertices labeled by integers representing their position in the target space, with the SOS constraint that adjacent vertices have labels differing by +1 or -1. A non-trivial partition function is obtained whenever the target space is bounded by walls. We concentrate on the two cases where the target space is (i) the half-line bounded by a wall at the origin or (ii) a segment bounded by two walls at a finite distance. The general solution has a soliton-like structure involving elliptic functions. We derive the corresponding continuum scaling limit which takes the remarkable form of the Weierstrass p-function with constrained periods. These results are used to analyze the probability for an evolving population spreading in one dimension to attain the boundary of a given domain with the geometry of the target (i) or (ii). They also translate, via suitable bijections, into generating functions for bounded planar graphs.Comment: 25 pages, 7 figures, tex, harvmac, epsf; accepted version; main modifications in Sect. 5-6 and conclusio

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    Weakly directed self-avoiding walks

    Get PDF
    We define a new family of self-avoiding walks (SAW) on the square lattice, called weakly directed walks. These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed walks grows linearly. Finally, we study a diagonal variant of this model

    Random Graph Coloring - a Statistical Physics Approach

    Get PDF
    The problem of vertex coloring in random graphs is studied using methods of statistical physics and probability. Our analytical results are compared to those obtained by exact enumeration and Monte-Carlo simulations. We critically discuss the merits and shortcomings of the various methods, and interpret the results obtained. We present an exact analytical expression for the 2-coloring problem as well as general replica symmetric approximated solutions for the thermodynamics of the graph coloring problem with p colors and K-body edges.Comment: 17 pages, 9 figure

    Census of Planar Maps: From the One-Matrix Model Solution to a Combinatorial Proof

    Full text link
    We consider the problem of enumeration of planar maps and revisit its one-matrix model solution in the light of recent combinatorial techniques involving conjugated trees. We adapt and generalize these techniques so as to give an alternative and purely combinatorial solution to the problem of counting arbitrary planar maps with prescribed vertex degrees.Comment: 29 pages, 14 figures, tex, harvmac, eps

    Exploiting Anonymity in Approximate Linear Programming: Scaling to Large Multiagent MDPs (Extended Version)

    Get PDF
    Many exact and approximate solution methods for Markov Decision Processes (MDPs) attempt to exploit structure in the problem and are based on factorization of the value function. Especially multiagent settings, however, are known to suffer from an exponential increase in value component sizes as interactions become denser, meaning that approximation architectures are restricted in the problem sizes and types they can handle. We present an approach to mitigate this limitation for certain types of multiagent systems, exploiting a property that can be thought of as "anonymous influence" in the factored MDP. Anonymous influence summarizes joint variable effects efficiently whenever the explicit representation of variable identity in the problem can be avoided. We show how representational benefits from anonymity translate into computational efficiencies, both for general variable elimination in a factor graph but in particular also for the approximate linear programming solution to factored MDPs. The latter allows to scale linear programming to factored MDPs that were previously unsolvable. Our results are shown for the control of a stochastic disease process over a densely connected graph with 50 nodes and 25 agents.Comment: Extended version of AAAI 2016 pape

    Data validation and reliability calculations in digital protection systems

    Get PDF
    Imperial Users onl
    • …
    corecore