8,779 research outputs found

    An Iterative Spanning Forest Framework for Superpixel Segmentation

    Full text link
    Superpixel segmentation has become an important research problem in image processing. In this paper, we propose an Iterative Spanning Forest (ISF) framework, based on sequences of Image Foresting Transforms, where one can choose i) a seed sampling strategy, ii) a connectivity function, iii) an adjacency relation, and iv) a seed pixel recomputation procedure to generate improved sets of connected superpixels (supervoxels in 3D) per iteration. The superpixels in ISF structurally correspond to spanning trees rooted at those seeds. We present five ISF methods to illustrate different choices of its components. These methods are compared with approaches from the state-of-the-art in effectiveness and efficiency. The experiments involve 2D and 3D datasets with distinct characteristics, and a high level application, named sky image segmentation. The theoretical properties of ISF are demonstrated in the supplementary material and the results show that some of its methods are competitive with or superior to the best baselines in effectiveness and efficiency

    Beyond Pixels: A Comprehensive Survey from Bottom-up to Semantic Image Segmentation and Cosegmentation

    Full text link
    Image segmentation refers to the process to divide an image into nonoverlapping meaningful regions according to human perception, which has become a classic topic since the early ages of computer vision. A lot of research has been conducted and has resulted in many applications. However, while many segmentation algorithms exist, yet there are only a few sparse and outdated summarizations available, an overview of the recent achievements and issues is lacking. We aim to provide a comprehensive review of the recent progress in this field. Covering 180 publications, we give an overview of broad areas of segmentation topics including not only the classic bottom-up approaches, but also the recent development in superpixel, interactive methods, object proposals, semantic image parsing and image cosegmentation. In addition, we also review the existing influential datasets and evaluation metrics. Finally, we suggest some design flavors and research directions for future research in image segmentation.Comment: submitted to Elsevier Journal of Visual Communications and Image Representatio

    Machine Learning Techniques and Applications For Ground-based Image Analysis

    Full text link
    Ground-based whole sky cameras have opened up new opportunities for monitoring the earth's atmosphere. These cameras are an important complement to satellite images by providing geoscientists with cheaper, faster, and more localized data. The images captured by whole sky imagers can have high spatial and temporal resolution, which is an important pre-requisite for applications such as solar energy modeling, cloud attenuation analysis, local weather prediction, etc. Extracting valuable information from the huge amount of image data by detecting and analyzing the various entities in these images is challenging. However, powerful machine learning techniques have become available to aid with the image analysis. This article provides a detailed walk-through of recent developments in these techniques and their applications in ground-based imaging. We aim to bridge the gap between computer vision and remote sensing with the help of illustrative examples. We demonstrate the advantages of using machine learning techniques in ground-based image analysis via three primary applications -- segmentation, classification, and denoising

    A Multilayer-Based Framework for Online Background Subtraction with Freely Moving Cameras

    Full text link
    The exponentially increasing use of moving platforms for video capture introduces the urgent need to develop the general background subtraction algorithms with the capability to deal with the moving background. In this paper, we propose a multilayer-based framework for online background subtraction for videos captured by moving cameras. Unlike the previous treatments of the problem, the proposed method is not restricted to binary segmentation of background and foreground, but formulates it as a multi-label segmentation problem by modeling multiple foreground objects in different layers when they appear simultaneously in the scene. We assign an independent processing layer to each foreground object, as well as the background, where both motion and appearance models are estimated, and a probability map is inferred using a Bayesian filtering framework. Finally, Multi-label Graph-cut on Markov Random Field is employed to perform pixel-wise labeling. Extensive evaluation results show that the proposed method outperforms state-of-the-art methods on challenging video sequences.Comment: Accepted by ICCV'1

    Multi-View Surveillance Video Summarization via Joint Embedding and Sparse Optimization

    Full text link
    Most traditional video summarization methods are designed to generate effective summaries for single-view videos, and thus they cannot fully exploit the complicated intra and inter-view correlations in summarizing multi-view videos in a camera network. In this paper, with the aim of summarizing multi-view videos, we introduce a novel unsupervised framework via joint embedding and sparse representative selection. The objective function is two-fold. The first is to capture the multi-view correlations via an embedding, which helps in extracting a diverse set of representatives. The second is to use a `2;1- norm to model the sparsity while selecting representative shots for the summary. We propose to jointly optimize both of the objectives, such that embedding can not only characterize the correlations, but also indicate the requirements of sparse representative selection. We present an efficient alternating algorithm based on half-quadratic minimization to solve the proposed non-smooth and non-convex objective with convergence analysis. A key advantage of the proposed approach with respect to the state-of-the-art is that it can summarize multi-view videos without assuming any prior correspondences/alignment between them, e.g., uncalibrated camera networks. Rigorous experiments on several multi-view datasets demonstrate that our approach clearly outperforms the state-of-the-art methods.Comment: IEEE Trans. on Multimedia, 2017 (In Press

    Leveraging Domain Knowledge to Improve Microscopy Image Segmentation with Lifted Multicuts

    Full text link
    The throughput of electron microscopes has increased significantly in recent years, enabling detailed analysis of cell morphology and ultrastructure. Analysis of neural circuits at single-synapse resolution remains the flagship target of this technique, but applications to cell and developmental biology are also starting to emerge at scale. The amount of data acquired in such studies makes manual instance segmentation, a fundamental step in many analysis pipelines, impossible. While automatic segmentation approaches have improved significantly thanks to the adoption of convolutional neural networks, their accuracy still lags behind human annotations and requires additional manual proof-reading. A major hindrance to further improvements is the limited field of view of the segmentation networks preventing them from exploiting the expected cell morphology or other prior biological knowledge which humans use to inform their segmentation decisions. In this contribution, we show how such domain-specific information can be leveraged by expressing it as long-range interactions in a graph partitioning problem known as the lifted multicut problem. Using this formulation, we demonstrate significant improvement in segmentation accuracy for three challenging EM segmentation problems from neuroscience and cell biology

    Water Detection through Spatio-Temporal Invariant Descriptors

    Full text link
    In this work, we aim to segment and detect water in videos. Water detection is beneficial for appllications such as video search, outdoor surveillance, and systems such as unmanned ground vehicles and unmanned aerial vehicles. The specific problem, however, is less discussed compared to general texture recognition. Here, we analyze several motion properties of water. First, we describe a video pre-processing step, to increase invariance against water reflections and water colours. Second, we investigate the temporal and spatial properties of water and derive corresponding local descriptors. The descriptors are used to locally classify the presence of water and a binary water detection mask is generated through spatio-temporal Markov Random Field regularization of the local classifications. Third, we introduce the Video Water Database, containing several hours of water and non-water videos, to validate our algorithm. Experimental evaluation on the Video Water Database and the DynTex database indicates the effectiveness of the proposed algorithm, outperforming multiple algorithms for dynamic texture recognition and material recognition by ca. 5% and 15% respectively

    Factor Analysis in Fault Diagnostics Using Random Forest

    Full text link
    Factor analysis or sometimes referred to as variable analysis has been extensively used in classification problems for identifying specific factors that are significant to particular classes. This type of analysis has been widely used in application such as customer segmentation, medical research, network traffic, image, and video classification. Today, factor analysis is prominently being used in fault diagnosis of machines to identify the significant factors and to study the root cause of a specific machine fault. The advantage of performing factor analysis in machine maintenance is to perform prescriptive analysis (helps answer what actions to take?) and preemptive analysis (helps answer how to eliminate the failure mode?). In this paper, a real case of an industrial rotating machine was considered where vibration and ambient temperature data was collected for monitoring the health of the machine. Gaussian mixture model-based clustering was used to cluster the data into significant groups, and spectrum analysis was used to diagnose each cluster to a specific state of the machine. The significant features that attribute to a particular mode of the machine were identified by using the random forest classification model. The significant features for specific modes of the machine were used to conclude that the clusters generated are distinct and have a unique set of significant features

    Algorithms for screening of Cervical Cancer: A chronological review

    Full text link
    There are various algorithms and methodologies used for automated screening of cervical cancer by segmenting and classifying cervical cancer cells into different categories. This study presents a critical review of different research papers published that integrated AI methods in screening cervical cancer via different approaches analyzed in terms of typical metrics like dataset size, drawbacks, accuracy etc. An attempt has been made to furnish the reader with an insight of Machine Learning algorithms like SVM (Support Vector Machines), GLCM (Gray Level Co-occurrence Matrix), k-NN (k-Nearest Neighbours), MARS (Multivariate Adaptive Regression Splines), CNNs (Convolutional Neural Networks), spatial fuzzy clustering algorithms, PNNs (Probabilistic Neural Networks), Genetic Algorithm, RFT (Random Forest Trees), C5.0, CART (Classification and Regression Trees) and Hierarchical clustering algorithm for feature extraction, cell segmentation and classification. This paper also covers the publicly available datasets related to cervical cancer. It presents a holistic review on the computational methods that have evolved over the period of time, in chronological order in detection of malignant cells.Comment: This critical review of various machine learning algorithms for Cervical Cancer Screening was completed at National Institute of Biologicals(NIB), India by B.Tech final year Computer Science students at JSSATE, Noida, India under the supervision of Director at NIB Dr. Surinder Singh and Jr. Scientist Sh. P.S. Chandranan
    • …
    corecore