187 research outputs found

    Enhancement and Edge-Preserving Denoising: An OpenCL-Based Approach for Remote Sensing Imagery

    Get PDF
    Image enhancement and edge-preserving denoising are relevant steps before classification or other postprocessing techniques for remote sensing images. However, multisensor array systems are able to simultaneously capture several low-resolution images from the same area on different wavelengths, forming a high spatial/spectral resolution image and raising a series of new challenges. In this paper, an open computing language based parallel implementation approach is presented for near real-time enhancement based on Bayesian maximum entropy (BME), as well as an edge-preserving denoising algorithm for remote sensing imagery, which uses the local linear Stein’s unbiased risk estimate (LLSURE). BME was selected for its results on synthetic aperture radar image enhancement, whereas LLSURE has shown better noise removal properties than other commonly used methods. Within this context, image processing methods are algorithmically adapted via parallel computing techniques and efficiently implemented using CPUs and commodity graphics processing units (GPUs). Experimental results demonstrate the reduction of computational load of real-world image processing for near real-time GPU adapted implementation.ITESO, A.C

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    The 10th Jubilee Conference of PhD Students in Computer Science

    Get PDF

    Nonlinear Uncertainty Propagation in Astrodynamics Using Differential Algebra and Graphics Processing Units

    Get PDF
    In this paper, two numerical methods for nonlinear uncertainty propagation in astrodynamics are presented and thoroughly compared. Both methods are based on the Monte Carlo idea of evaluating multiple samples of an initial statistical distribution around the nominal state. However, whereas the graphics processing unit implementation aims at increasing the performances of the classical Monte Carlo approach exploiting the massively parallel architecture of modern general-purpose computing on graphics processing units, the method based on differential algebra is aimed at the improvement and generalization of standard linear methods for uncertainty propagation. The two proposed numerical methods are applied to test cases considering both simple two-body dynamics and a full n-body dynamics with accurate ephemeris. The results of the propagation are thoroughly compared with particular emphasis on both accuracy and computational performances

    Faster inference from state space models via GPU computing

    Get PDF
    Funding: C.F.-J. is funded via a doctoral scholarship from the University of St Andrews, School of Mathematics and Statistics.Inexpensive Graphics Processing Units (GPUs) offer the potential to greatly speed up computation by employing their massively parallel architecture to perform arithmetic operations more efficiently. Population dynamics models are important tools in ecology and conservation. Modern Bayesian approaches allow biologically realistic models to be constructed and fitted to multiple data sources in an integrated modelling framework based on a class of statistical models called state space models. However, model fitting is often slow, requiring hours to weeks of computation. We demonstrate the benefits of GPU computing using a model for the population dynamics of British grey seals, fitted with a particle Markov chain Monte Carlo algorithm. Speed-ups of two orders of magnitude were obtained for estimations of the log-likelihood, compared to a traditional ‘CPU-only’ implementation, allowing for an accurate method of inference to be used where this was previously too computationally expensive to be viable. GPU computing has enormous potential, but one barrier to further adoption is a steep learning curve, due to GPUs' unique hardware architecture. We provide a detailed description of hardware and software setup, and our case study provides a template for other similar applications. We also provide a detailed tutorial-style description of GPU hardware architectures, and examples of important GPU-specific programming practices.Publisher PDFPeer reviewe

    Aceleración de algoritmos de procesamiento de imágenes para el análisis de partículas individuales con microscopia electrónica

    Full text link
    Tesis Doctoral inédita cotutelada por la Masaryk University (República Checa) y la Universidad Autónoma de Madrid, Escuela Politécnica Superior, Departamento de Ingeniería Informática. Fecha de Lectura: 24-10-2022Cryogenic Electron Microscopy (Cryo-EM) is a vital field in current structural biology. Unlike X-ray crystallography and Nuclear Magnetic Resonance, it can be used to analyze membrane proteins and other samples with overlapping spectral peaks. However, one of the significant limitations of Cryo-EM is the computational complexity. Modern electron microscopes can produce terabytes of data per single session, from which hundreds of thousands of particles must be extracted and processed to obtain a near-atomic resolution of the original sample. Many existing software solutions use high-Performance Computing (HPC) techniques to bring these computations to the realm of practical usability. The common approach to acceleration is parallelization of the processing, but in praxis, we face many complications, such as problem decomposition, data distribution, load scheduling, balancing, and synchronization. Utilization of various accelerators further complicates the situation, as heterogeneous hardware brings additional caveats, for example, limited portability, under-utilization due to synchronization, and sub-optimal code performance due to missing specialization. This dissertation, structured as a compendium of articles, aims to improve the algorithms used in Cryo-EM, esp. the SPA (Single Particle Analysis). We focus on the single-node performance optimizations, using the techniques either available or developed in the HPC field, such as heterogeneous computing or autotuning, which potentially needs the formulation of novel algorithms. The secondary goal of the dissertation is to identify the limitations of state-of-the-art HPC techniques. Since the Cryo-EM pipeline consists of multiple distinct steps targetting different types of data, there is no single bottleneck to be solved. As such, the presented articles show a holistic approach to performance optimization. First, we give details on the GPU acceleration of the specific programs. The achieved speedup is due to the higher performance of the GPU, adjustments of the original algorithm to it, and application of the novel algorithms. More specifically, we provide implementation details of programs for movie alignment, 2D classification, and 3D reconstruction that have been sped up by order of magnitude compared to their original multi-CPU implementation or sufficiently the be used on-the-fly. In addition to these three programs, multiple other programs from an actively used, open-source software package XMIPP have been accelerated and improved. Second, we discuss our contribution to HPC in the form of autotuning. Autotuning is the ability of software to adapt to a changing environment, i.e., input or executing hardware. Towards that goal, we present cuFFTAdvisor, a tool that proposes and, through autotuning, finds the best configuration of the cuFFT library for given constraints of input size and plan settings. We also introduce a benchmark set of ten autotunable kernels for important computational problems implemented in OpenCL or CUDA, together with the introduction of complex dynamic autotuning to the KTT tool. Third, we propose an image processing framework Umpalumpa, which combines a task-based runtime system, data-centric architecture, and dynamic autotuning. The proposed framework allows for writing complex workflows which automatically use available HW resources and adjust to different HW and data but at the same time are easy to maintainThe project that gave rise to these results received the support of a fellowship from the “la Caixa” Foundation (ID 100010434). The fellowship code is LCF/BQ/DI18/11660021. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 71367

    Sensing and Signal Processing in Smart Healthcare

    Get PDF
    In the last decade, we have witnessed the rapid development of electronic technologies that are transforming our daily lives. Such technologies are often integrated with various sensors that facilitate the collection of human motion and physiological data and are equipped with wireless communication modules such as Bluetooth, radio frequency identification, and near-field communication. In smart healthcare applications, designing ergonomic and intuitive human–computer interfaces is crucial because a system that is not easy to use will create a huge obstacle to adoption and may significantly reduce the efficacy of the solution. Signal and data processing is another important consideration in smart healthcare applications because it must ensure high accuracy with a high level of confidence in order for the applications to be useful for clinicians in making diagnosis and treatment decisions. This Special Issue is a collection of 10 articles selected from a total of 26 contributions. These contributions span the areas of signal processing and smart healthcare systems mostly contributed by authors from Europe, including Italy, Spain, France, Portugal, Romania, Sweden, and Netherlands. Authors from China, Korea, Taiwan, Indonesia, and Ecuador are also included

    Alternative Processor within Threshold: Flexible Scheduling on Heterogeneous Systems

    Get PDF
    Computing systems have become increasingly heterogeneous contributing to higher performance and power efficiency. However, this is at the cost of increasing the overall complexity of designing such systems. One key challenge in the design of heterogeneous systems is the efficient scheduling of computational load. To address this challenge, this paper thoroughly analyzes state of the art scheduling policies and proposes a new dynamic scheduling heuristic: Alternative Processor within Threshold (APT). This heuristic uses a flexibility factor to attain efficient usage of the available hardware resources, taking advantage of the degree of heterogeneity of the system. In a GPU-CPU-FPGA system, tested on workloads with and without data dependencies, this approach improved overall execution time by 16% and 18% when compared to the second-best heuristic
    corecore