5,249 research outputs found

    Random Feature Maps for Dot Product Kernels

    Full text link
    Approximating non-linear kernels using feature maps has gained a lot of interest in recent years due to applications in reducing training and testing times of SVM classifiers and other kernel based learning algorithms. We extend this line of work and present low distortion embeddings for dot product kernels into linear Euclidean spaces. We base our results on a classical result in harmonic analysis characterizing all dot product kernels and use it to define randomized feature maps into explicit low dimensional Euclidean spaces in which the native dot product provides an approximation to the dot product kernel with high confidence.Comment: To appear in the proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS 2012). This version corrects a minor error with Lemma 10. Acknowledgements : Devanshu Bhimwa

    Recycling Randomness with Structure for Sublinear time Kernel Expansions

    Get PDF
    We propose a scheme for recycling Gaussian random vectors into structured matrices to approximate various kernel functions in sublinear time via random embeddings. Our framework includes the Fastfood construction as a special case, but also extends to Circulant, Toeplitz and Hankel matrices, and the broader family of structured matrices that are characterized by the concept of low-displacement rank. We introduce notions of coherence and graph-theoretic structural constants that control the approximation quality, and prove unbiasedness and low-variance properties of random feature maps that arise within our framework. For the case of low-displacement matrices, we show how the degree of structure and randomness can be controlled to reduce statistical variance at the cost of increased computation and storage requirements. Empirical results strongly support our theory and justify the use of a broader family of structured matrices for scaling up kernel methods using random features

    On the Inductive Bias of Neural Tangent Kernels

    Get PDF
    State-of-the-art neural networks are heavily over-parameterized, making the optimization algorithm a crucial ingredient for learning predictive models with good generalization properties. A recent line of work has shown that in a certain over-parameterized regime, the learning dynamics of gradient descent are governed by a certain kernel obtained at initialization, called the neural tangent kernel. We study the inductive bias of learning in such a regime by analyzing this kernel and the corresponding function space (RKHS). In particular, we study smoothness, approximation, and stability properties of functions with finite norm, including stability to image deformations in the case of convolutional networks, and compare to other known kernels for similar architectures.Comment: NeurIPS 201

    Group Invariance, Stability to Deformations, and Complexity of Deep Convolutional Representations

    Get PDF
    The success of deep convolutional architectures is often attributed in part to their ability to learn multiscale and invariant representations of natural signals. However, a precise study of these properties and how they affect learning guarantees is still missing. In this paper, we consider deep convolutional representations of signals; we study their invariance to translations and to more general groups of transformations, their stability to the action of diffeomorphisms, and their ability to preserve signal information. This analysis is carried by introducing a multilayer kernel based on convolutional kernel networks and by studying the geometry induced by the kernel mapping. We then characterize the corresponding reproducing kernel Hilbert space (RKHS), showing that it contains a large class of convolutional neural networks with homogeneous activation functions. This analysis allows us to separate data representation from learning, and to provide a canonical measure of model complexity, the RKHS norm, which controls both stability and generalization of any learned model. In addition to models in the constructed RKHS, our stability analysis also applies to convolutional networks with generic activations such as rectified linear units, and we discuss its relationship with recent generalization bounds based on spectral norms
    • …
    corecore