8,463 research outputs found

    Evaluating the Differences of Gridding Techniques for Digital Elevation Models Generation and Their Influence on the Modeling of Stony Debris Flows Routing: A Case Study From Rovina di Cancia Basin (North-Eastern Italian Alps)

    Get PDF
    Debris \ufb02ows are among the most hazardous phenomena in mountain areas. To cope with debris \ufb02ow hazard, it is common to delineate the risk-prone areas through routing models. The most important input to debris \ufb02ow routing models are the topographic data, usually in the form of Digital Elevation Models (DEMs). The quality of DEMs depends on the accuracy, density, and spatial distribution of the sampled points; on the characteristics of the surface; and on the applied gridding methodology. Therefore, the choice of the interpolation method affects the realistic representation of the channel and fan morphology, and thus potentially the debris \ufb02ow routing modeling outcomes. In this paper, we initially investigate the performance of common interpolation methods (i.e., linear triangulation, natural neighbor, nearest neighbor, Inverse Distance to a Power, ANUDEM, Radial Basis Functions, and ordinary kriging) in building DEMs with the complex topography of a debris \ufb02ow channel located in the Venetian Dolomites (North-eastern Italian Alps), by using small footprint full- waveform Light Detection And Ranging (LiDAR) data. The investigation is carried out through a combination of statistical analysis of vertical accuracy, algorithm robustness, and spatial clustering of vertical errors, and multi-criteria shape reliability assessment. After that, we examine the in\ufb02uence of the tested interpolation algorithms on the performance of a Geographic Information System (GIS)-based cell model for simulating stony debris \ufb02ows routing. In detail, we investigate both the correlation between the DEMs heights uncertainty resulting from the gridding procedure and that on the corresponding simulated erosion/deposition depths, both the effect of interpolation algorithms on simulated areas, erosion and deposition volumes, solid-liquid discharges, and channel morphology after the event. The comparison among the tested interpolation methods highlights that the ANUDEM and ordinary kriging algorithms are not suitable for building DEMs with complex topography. Conversely, the linear triangulation, the natural neighbor algorithm, and the thin-plate spline plus tension and completely regularized spline functions ensure the best trade-off among accuracy and shape reliability. Anyway, the evaluation of the effects of gridding techniques on debris \ufb02ow routing modeling reveals that the choice of the interpolation algorithm does not signi\ufb01cantly affect the model outcomes

    Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data

    Get PDF
    This study presents and compares new methods to describe the 3D canopy structure with Airborne Laser Scanning (ALS) waveform data as well as ALS point data. The ALS waveform data were analyzed in three different ways; by summing the intensity of the waveforms in height intervals (a); by first normalizing the waveforms with an algorithm based on Beer-Lambert law to compensate for the shielding effect of higher vegetation layers on reflection from lower layers and then summing the intensity (b); and by deriving points from the waveforms (c). As a comparison, conventional, discrete return ALS point data from the laser scanning system were also analyzed (d). The study area was located in hemi-boreal, spruce dominated forest in the southwest of Sweden (Lat. 58° N, Long. 13° E). The vegetation volume profile was defined as the volume of all tree crowns and shrubs in 1 dm height intervals in a field plot and the total vegetation volume as the sum of the vegetation volume profile in the field plot. The total vegetation volume was estimated for 68 field plots with 12 m radius from the proportion between the amount of ALS reflections from the vegetation and the total amount of ALS reflections based on Beer-Lambert law. ALS profiles were derived from the distribution of the ALS data above the ground in 1 dm height intervals. The ALS profiles were rescaled using the estimated total vegetation volume to derive the amount of vegetation at different heights above the ground. The root mean square error (RMSE) for cross validated regression estimates of the total vegetation volume was 31.9% for ALS waveform data (a), 27.6% for normalized waveform data (b), 29.1% for point data derived from the ALS waveforms (c), and 36.5% for ALS point data from the laser scanning system (d). The correspondence between the estimated vegetation volume profiles was also best for the normalized waveform data and the point data derived from the ALS waveforms and worst for ALS point data from the laser scanning system as demonstrated by the Reynolds error index. The results suggest that ALS waveform data describe the volumetric aspects of vertical vegetation structure somewhat more accurately than ALS point data from the laser scanning system and that compensation for the shielding effect of higher vegetation layers is useful. The new methods for estimation of vegetation volume profiles from ALS data could be used in the future to derive 3D models of the vegetation structure in large areas

    Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with lidar-derived estimates

    Get PDF
    Remote sensing supports carbon estimation, allowing the upscaling of field measurements to large extents. Lidar is considered the premier instrument to estimate above ground biomass, but data are expensive and collected on-demand, with limited spatial and temporal coverage. The previous JERS and ALOS SAR satellites data were extensively employed to model forest biomass, with literature suggesting signal saturation at low-moderate biomass values, and an influence of plot size on estimates accuracy. The ALOS2 continuity mission since May 2014 produces data with improved features with respect to the former ALOS, such as increased spatial resolution and reduced revisit time. We used ALOS2 backscatter data, testing also the integration with additional features (SAR textures and NDVI from Landsat 8 data) together with ground truth, to model and map above ground biomass in two mixed forest sites: Tahoe (California) and Asiago (Alps). While texture was useful to improve the model performance, the best model was obtained using joined SAR and NDVI (R2 equal to 0.66). In this model, only a slight saturation was observed, at higher levels than what usually reported in literature for SAR; the trend requires further investigation but the model confirmed the complementarity of optical and SAR datatypes. For comparison purposes, we also generated a biomass map for Asiago using lidar data, and considered a previous lidar-based study for Tahoe; in these areas, the observed R2 were 0.92 for Tahoe and 0.75 for Asiago, respectively. The quantitative comparison of the carbon stocks obtained with the two methods allows discussion of sensor suitability. The range of local variation captured by lidar is higher than those by SAR and NDVI, with the latter showing overestimation. However, this overestimation is very limited for one of the study areas, suggesting that when the purpose is the overall quantification of the stored carbon, especially in areas with high carbon density, satellite data with lower cost and broad coverage can be as effective as lidar

    Estimating Tropical Forest Structure Using a Terrestrial Lidar

    Get PDF
    Forest structure comprises numerous quantifiable biometric components and characteristics, which include tree geometry and stand architecture. These structural components are important in the understanding of the past and future trajectories of these biomes. Tropical forests are often considered the most structurally complex and yet least understood of forested ecosystems. New technologies have provided novel avenues for quantifying biometric properties of forested ecosystems, one of which is LIght Detection And Ranging (lidar). This sensor can be deployed on satellite, aircraft, unmanned aerial vehicles, and terrestrial platforms. In this study we examined the efficacy of a terrestrial lidar scanner (TLS) system in a tropical forest to estimate forest structure. Our study was conducted in January 2012 at La Selva, Costa Rica at twenty locations in a predominantly undisturbed forest. At these locations we collected field measured biometric attributes using a variable plot design. We also collected TLS data from the center of each plot. Using this data we developed relative vegetation profiles (RVPs) and calculated a series of parameters including entropy, Fast Fourier Transform (FFT), number of layers and plant area index to develop statistical relationships with field data.We developed statistical models using a series of multiple linear regressions, all of which converged on significant relationships with the strongest relationship being for mean crown depth (r2 = 0.88, p \u3c 0.001, RMSE = 1.04 m). Tree density was found to have the poorest significant relationship (r2 = 0.50, p \u3c 0.01, RMSE = 153.28 n ha-1). We found a significant relationship between basal area and lidar metrics (r2 = 0.75, p \u3c 0.001, RMSE = 3.76 number ha-1). Parameters selected in our models varied, thus indicating the potential relevance of multiple features in canopy profiles and geometry that are related to field-measured structure. Models for biomass estimation included structural canopy variables in addition to height metrics. Our work indicates that vegetation profiles from TLS data can provide useful information on forest structure

    Estimation of forest variables using airborne laser scanning

    Get PDF
    Airborne laser scanning can provide three-dimensional measurements of the forest canopy with high efficiency and precision. There are presently a large number of airborne laser scanning instruments in operation. The aims of the studies reported in this thesis were, to develop and validate methods for estimation of forest variables using laser data, and to investigate the influence of laser system parameters on the estimates. All studies were carried out in hemi-boreal forest at a test area in southwestern Sweden (lat. 58°30’N, long. 13°40’ E). Forest variables were estimated using regression models. On plot level, the Root Mean Square Error (RMSE) for mean tree height estimations ranged between 6% and 11% of the average value for different datasets and methods. The RMSE for stem volume estimations ranged between 19% and 26% of the average value for different datasets and methods. On stand level (area 0.64 ha), the RMSE was 3% and 11% of the average value for mean tree height and stem volume estimations, respectively. A simulation model was used to investigate the effect of different scanning angles on laser measurement of tree height and canopy closure. The effect of different scanning angles was different within different simulated forest types, e.g., different tree species. High resolution laser data were used for detection of individual trees. In total, 71% of the field measurements were detected representing 91% of the total stem volume. Height and crown diameter of the detected trees could be estimated with a RMSE of 0.63 m and 0.61 m, respectively. The magnitude of the height estimation errors was similar to what is usually achieved using field inventory. Using different laser footprint diameters (0.26 to 3.68 m) gave similar estimation accuracies. The tree species Norway spruce (Picea abies L. Karst.) and Scots pine (Pinus sylvestris L.) were discriminated at individual tree level with an accuracy of 95%. The results in this thesis show that airborne laser scanners are useful as forest inventory tools. Forest variables can be estimated on tree level, plot level and stand level with similar accuracies as traditional field inventories

    Investigating Full-Waveform Lidar Data for Detection and Recognition of Vertical Objects

    Get PDF
    A recent innovation in commercially-available topographic lidar systems is the ability to record return waveforms at high sampling frequencies. These “full-waveform” systems provide up to two orders of magnitude more data than “discrete-return” systems. However, due to the relatively limited capabilities of current processing and analysis software, more data does not always translate into more or better information for object extraction applications. In this paper, we describe a new approach for exploiting full waveform data to improve detection and recognition of vertical objects, such as trees, poles, buildings, towers, and antennas. Each waveform is first deconvolved using an expectation-maximization (EM) algorithm to obtain a train of spikes in time, where each spike corresponds to an individual laser reflection. The output is then georeferenced to create extremely dense, detailed X,Y,Z,I point clouds, where I denotes intensity. A tunable parameter is used to control the number of spikes in the deconvolved waveform, and, hence, the point density of the output point cloud. Preliminary results indicate that the average number of points on vertical objects using this method is several times higher than using discrete-return lidar data. The next steps in this ongoing research will involve voxelizing the lidar point cloud to obtain a high-resolution volume of intensity values and computing a 3D wavelet representation. The final step will entail performing vertical object detection/recognition in the wavelet domain using a multiresolution template matching approach
    • …
    corecore