1,451 research outputs found

    Random Bit Quadrature and Approximation of Distributions on Hilbert Spaces

    Full text link
    We study the approximation of expectations \E(f(X)) for Gaussian random elements XX with values in a separable Hilbert space HH and Lipschitz continuous functionals f ⁣:HRf \colon H \to \R. We consider restricted Monte Carlo algorithms, which may only use random bits instead of random numbers. We determine the asymptotics (in some cases sharp up to multiplicative constants, in the other cases sharp up to logarithmic factors) of the corresponding nn-th minimal error in terms of the decay of the eigenvalues of the covariance operator of XX. It turns out that, within the margins from above, restricted Monte Carlo algorithms are not inferior to arbitrary Monte Carlo algorithms, and suitable random bit multilevel algorithms are optimal. The analysis of this problem leads to a variant of the quantization problem, namely, the optimal approximation of probability measures on HH by uniform distributions supported by a given, finite number of points. We determine the asymptotics (up to multiplicative constants) of the error of the best approximation for the one-dimensional standard normal distribution, for Gaussian measures as above, and for scalar autonomous SDEs

    Some Results on the Complexity of Numerical Integration

    Full text link
    This is a survey (21 pages, 124 references) written for the MCQMC 2014 conference in Leuven, April 2014. We start with the seminal paper of Bakhvalov (1959) and end with new results on the curse of dimension and on the complexity of oscillatory integrals. Some small errors of earlier versions are corrected

    Secure quantum key distribution using squeezed states

    Get PDF
    We prove the security of a quantum key distribution scheme based on transmission of squeezed quantum states of a harmonic oscillator. Our proof employs quantum error-correcting codes that encode a finite-dimensional quantum system in the infinite-dimensional Hilbert space of an oscillator, and protect against errors that shift the canonical variables p and q. If the noise in the quantum channel is weak, squeezing signal states by 2.51 dB (a squeeze factor e^r=1.34) is sufficient in principle to ensure the security of a protocol that is suitably enhanced by classical error correction and privacy amplification. Secure key distribution can be achieved over distances comparable to the attenuation length of the quantum channel.Comment: 19 pages, 3 figures, RevTeX and epsf, new section on channel losse

    Random Bit Multilevel Algorithms for Stochastic Differential Equations

    Full text link
    We study the approximation of expectations \E(f(X)) for solutions XX of SDEs and functionals f ⁣:C([0,1],Rr)Rf \colon C([0,1],\R^r) \to \R by means of restricted Monte Carlo algorithms that may only use random bits instead of random numbers. We consider the worst case setting for functionals ff from the Lipschitz class w.r.t.\ the supremum norm. We construct a random bit multilevel Euler algorithm and establish upper bounds for its error and cost. Furthermore, we derive matching lower bounds, up to a logarithmic factor, that are valid for all random bit Monte Carlo algorithms, and we show that, for the given quadrature problem, random bit Monte Carlo algorithms are at least almost as powerful as general randomized algorithms

    Security of continuous-variable quantum key distribution against general attacks

    Full text link
    We prove the security of Gaussian continuous-variable quantum key distribution against arbitrary attacks in the finite-size regime. The novelty of our proof is to consider symmetries of quantum key distribution in phase space in order to show that, to good approximation, the Hilbert space of interest can be considered to be finite-dimensional, thereby allowing for the use of the postselection technique introduced by Christandl, Koenig and Renner (Phys. Rev. Lett. 102, 020504 (2009)). Our result greatly improves on previous work based on the de Finetti theorem which could not provide security for realistic, finite-size, implementations.Comment: 5 pages, plus 11 page appendi

    Inverse problems and uncertainty quantification

    Get PDF
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) - the propagation of uncertainty through a computational (forward) model - are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. This is especially the case as together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and quadratic Bayesian update on the small but taxing example of the chaotic Lorenz 84 model, where we experiment with the influence of different observation or measurement operators on the update.Comment: 25 pages, 17 figures. arXiv admin note: text overlap with arXiv:1201.404

    Inverse Problems in a Bayesian Setting

    Full text link
    In a Bayesian setting, inverse problems and uncertainty quantification (UQ) --- the propagation of uncertainty through a computational (forward) model --- are strongly connected. In the form of conditional expectation the Bayesian update becomes computationally attractive. We give a detailed account of this approach via conditional approximation, various approximations, and the construction of filters. Together with a functional or spectral approach for the forward UQ there is no need for time-consuming and slowly convergent Monte Carlo sampling. The developed sampling-free non-linear Bayesian update in form of a filter is derived from the variational problem associated with conditional expectation. This formulation in general calls for further discretisation to make the computation possible, and we choose a polynomial approximation. After giving details on the actual computation in the framework of functional or spectral approximations, we demonstrate the workings of the algorithm on a number of examples of increasing complexity. At last, we compare the linear and nonlinear Bayesian update in form of a filter on some examples.Comment: arXiv admin note: substantial text overlap with arXiv:1312.504
    corecore