3,861 research outputs found

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    Authentication enhancement in command and control networks: (a study in Vehicular Ad-Hoc Networks)

    Get PDF
    Intelligent transportation systems contribute to improved traffic safety by facilitating real time communication between vehicles. By using wireless channels for communication, vehicular networks are susceptible to a wide range of attacks, such as impersonation, modification, and replay. In this context, securing data exchange between intercommunicating terminals, e.g., vehicle-to-everything (V2X) communication, constitutes a technological challenge that needs to be addressed. Hence, message authentication is crucial to safeguard vehicular ad-hoc networks (VANETs) from malicious attacks. The current state-of-the-art for authentication in VANETs relies on conventional cryptographic primitives, introducing significant computation and communication overheads. In this challenging scenario, physical (PHY)-layer authentication has gained popularity, which involves leveraging the inherent characteristics of wireless channels and the hardware imperfections to discriminate between wireless devices. However, PHY-layerbased authentication cannot be an alternative to crypto-based methods as the initial legitimacy detection must be conducted using cryptographic methods to extract the communicating terminal secret features. Nevertheless, it can be a promising complementary solution for the reauthentication problem in VANETs, introducing what is known as “cross-layer authentication.” This thesis focuses on designing efficient cross-layer authentication schemes for VANETs, reducing the communication and computation overheads associated with transmitting and verifying a crypto-based signature for each transmission. The following provides an overview of the proposed methodologies employed in various contributions presented in this thesis. 1. The first cross-layer authentication scheme: A four-step process represents this approach: initial crypto-based authentication, shared key extraction, re-authentication via a PHY challenge-response algorithm, and adaptive adjustments based on channel conditions. Simulation results validate its efficacy, especially in low signal-to-noise ratio (SNR) scenarios while proving its resilience against active and passive attacks. 2. The second cross-layer authentication scheme: Leveraging the spatially and temporally correlated wireless channel features, this scheme extracts high entropy shared keys that can be used to create dynamic PHY-layer signatures for authentication. A 3-Dimensional (3D) scattering Doppler emulator is designed to investigate the scheme’s performance at different speeds of a moving vehicle and SNRs. Theoretical and hardware implementation analyses prove the scheme’s capability to support high detection probability for an acceptable false alarm value ≤ 0.1 at SNR ≥ 0 dB and speed ≤ 45 m/s. 3. The third proposal: Reconfigurable intelligent surfaces (RIS) integration for improved authentication: Focusing on enhancing PHY-layer re-authentication, this proposal explores integrating RIS technology to improve SNR directed at designated vehicles. Theoretical analysis and practical implementation of the proposed scheme are conducted using a 1-bit RIS, consisting of 64 × 64 reflective units. Experimental results show a significant improvement in the Pd, increasing from 0.82 to 0.96 at SNR = − 6 dB for multicarrier communications. 4. The fourth proposal: RIS-enhanced vehicular communication security: Tailored for challenging SNR in non-line-of-sight (NLoS) scenarios, this proposal optimises key extraction and defends against denial-of-service (DoS) attacks through selective signal strengthening. Hardware implementation studies prove its effectiveness, showcasing improved key extraction performance and resilience against potential threats. 5. The fifth cross-layer authentication scheme: Integrating PKI-based initial legitimacy detection and blockchain-based reconciliation techniques, this scheme ensures secure data exchange. Rigorous security analyses and performance evaluations using network simulators and computation metrics showcase its effectiveness, ensuring its resistance against common attacks and time efficiency in message verification. 6. The final proposal: Group key distribution: Employing smart contract-based blockchain technology alongside PKI-based authentication, this proposal distributes group session keys securely. Its lightweight symmetric key cryptography-based method maintains privacy in VANETs, validated via Ethereum’s main network (MainNet) and comprehensive computation and communication evaluations. The analysis shows that the proposed methods yield a noteworthy reduction, approximately ranging from 70% to 99%, in both computation and communication overheads, as compared to the conventional approaches. This reduction pertains to the verification and transmission of 1000 messages in total

    Best sum-throughput evaluation of cooperative downlink transmission nonorthogonal multiple access system

    Get PDF
    In cooperative simultaneous wireless information and power transfer (SWIPT) nonorthogonal multiple access (NOMA) downlink situations, the current research investigates the total throughput of users in center and edge of cell. We focus on creating ways to solve these problems because the fair transmission rate of users located in cell edge and outage performance are significant hurdles at NOMA schemes. To enhance the functionality of cell-edge users, we examine a two-user NOMA scheme whereby the cell-center user functions as a SWIPT relay using power splitting (PS) with a multiple-input single-output. We calculated the probability of an outage for both center and edge cell users, using closed-form approximation formulas and evaluate the system efficacy. The usability of cell edge users is maximized by downlink transmission NOMA (CDT-NOMA) employing a SWIPT relay that employs PS. The suggested approach calculates the ideal value of the PS coefficient to optimize the sum throughput. Compared to the noncooperative and single-input single-output NOMA systems, the best SWIPT-NOMA system provides the cell-edge user with a significant throughput gain. Applying SWIPT-based relaying transmission has no impact on the framework’s overall throughput

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Coverage Performance Analysis of Reconfigurable Intelligent Surface-aided Millimeter Wave Network with Blockage Effect

    Get PDF
    In order to solve spectrum resource shortage and satisfy immense wireless data traffic demands, millimeter wave (mmWave) frequency with large available bandwidth has been proposed for wireless communication in 5G and beyond 5G. However, mmWave communications are susceptible to blockages. This characteristic limits the network performance. Meanwhile, reconfigurable intelligent surface (RIS) has been proposed to improve the propagation environment and extend the network coverage. Unlike traditional wireless technologies that improve transmission quality from transceivers, RISs enhance network performance by adjusting the propagation environment. One of the promising applications of RISs is to provide indirect line-of-sight (LoS) paths when the direct LoS path between transceivers does not exist. This application makes RIS particularly useful in mmWave communications. With effective RIS deployment, the mmWave RIS-aided network performance can be enhanced significantly. However, most existing works have analyzed RIS-aided network performance without exploiting the flexibility of RIS deployment and/or considering blockage effect, which leaves huge research gaps in RIS-aided networks. To fill the gaps, this thesis develops RIS-aided mmWave network models considering blockage effect under the stochastic geometry framework. Three scenarios, i.e., indoor, outdoor and outdoor-to-indoor (O2I) RIS-aided networks, are investigated. Firstly, LoS propagation is hard to be guaranteed in indoor environments since blockages are densely distributed. Deploying RISs to assist mmWave transmission is a promising way to overcome this challenge. In the first paper, we propose an indoor mmWave RIS-aided network model capturing the characteristics of indoor environments. With a given base station (BS) density, whether deploying RISs or increasing BS density to further enhance the network coverage is more cost-effective is investigated. We present a coverage calculation algorithm which can be adapted for different indoor layouts. Then, we jointly analyze the network cost and coverage probability. Our results indicate that deploying RISs with an appropriate number of BSs is more cost-effective for achieving an adequate coverage probability than increasing BSs only. Secondly, for a given total number of passive elements, whether fewer large-scale RISs or more small-scale RISs should be deployed has yet to be investigated in the presence of the blockage effect. In the second paper, we model and analyze a 3D outdoor mmWave RIS-aided network considering both building blockages and human-body blockages. Based on the proposed model, the analytical upper and lower bounds of the coverage probability are derived. Meanwhile, the closed-form coverage probability when RISs are much closer to the UE than the BS is derived. In terms of coverage enhancement, we reveal that sparsely deployed large-scale RISs outperform densely deployed small-scale RISs in scenarios of sparse blockages and/or long transmission distances, while densely deployed small-scale RISs win in scenarios of dense blockages and/or short transmission distances. Finally, building envelope (the exterior wall of a building) makes outdoor mmWave BS difficult to communicate with indoor UE. Transmissive RISs with passive elements have been proposed to refract the signal when the transmitter and receiver are on the different side of the RIS. Similar to reflective RISs, the passive elements of a transmissive RIS can implement phase shifts and adjust the amplitude of the incident signals. By deploying transmissive RISs on the building envelope, it is feasible to implement RIS-aided O2I mmWave networks. In the third paper, we develop a 3D RIS-aided O2I mmWave network model with random indoor blockages. Based on the model, a closed-form coverage probability approximation considering blockage spatial correlation is derived, and multiple-RIS deployment strategies are discussed. For a given total number of RIS passive elements, the impact of blockage density, the number and locations of RISs on the coverage probability is analyzed. All the analytical results have been validated by Monte Carlo simulation. The observations from the result analysis provide guidelines for the future deployment of RIS-aided mmWave networks

    Optical Wireless Communications Using Intelligent Walls

    Full text link
    This chapter is devoted to discussing the integration of intelligent reflecting surfaces (IRSs), or intelligent walls, in optical wireless communication (OWC) systems. IRS technology is a revolutionary concept that enables communication systems to harness the surrounding environment to control the propagation of light signals. Based on this, specific key performance indicators could be achieved by altering the electromagnetic response of the IRSs. In the following, we discuss the background theory and applications of IRSs and present a case study for an IRS-assisted indoor light-fidelity (LiFi) system. We then highlight some of the challenges related to this emerging concept and elaborate on future research directions

    Blind Beamforming for Intelligent Reflecting Surface in Fading Channels without CSI

    Full text link
    This paper discusses how to optimize the phase shifts of intelligent reflecting surface (IRS) to combat channel fading without any channel state information (CSI), namely blind beamforming. Differing from most previous works based on a two-stage paradigm of first estimating channels and then optimizing phase shifts, our approach is completely data-driven, only requiring a dataset of the received signal power at the user terminal. Thus, our method does not incur extra overhead costs for channel estimation, and does not entail collaboration from service provider, either. The main idea is to choose phase shifts at random and use the corresponding conditional sample mean of the received signal power to extract the main features of the wireless environment. This blind beamforming approach guarantees an N2N^2 boost of signal-to-noise ratio (SNR), where NN is the number of reflective elements (REs) of IRS, regardless of whether the direct channel is line-of-sight (LoS) or not. Moreover, blind beamforming is extended to a double-IRS system with provable performance. Finally, prototype tests show that the proposed blind beamforming method can be readily incorporated into the existing communication systems in the real world; simulation tests further show that it works for a variety of fading channel models.Comment: 14 pages, 14 figure

    Programming Wireless Security through Learning-Aided Spatiotemporal Digital Coding Metamaterial Antenna

    Full text link
    The advancement of future large-scale wireless networks necessitates the development of cost-effective and scalable security solutions. Conventional cryptographic methods, due to their computational and key management complexity, are unable to fulfill the low-latency and scalability requirements of these networks. Physical layer (PHY) security has been put forth as a cost-effective alternative to cryptographic mechanisms that can circumvent the need for explicit key exchange between communication devices, owing to the fact that PHY security relies on the physics of the signal transmission for providing security. In this work, a space-time-modulated digitally-coded metamaterial (MTM) leaky wave antenna (LWA) is proposed that can enable PHY security by achieving the functionalities of directional modulation (DM) using a machine learning-aided branch and bound (B&B) optimized coding sequence. From the theoretical perspective, it is first shown that the proposed space-time MTM antenna architecture can achieve DM through both the spatial and spectral manipulation of the orthogonal frequency division multiplexing (OFDM) signal received by a user equipment. Simulation results are then provided as proof-of-principle, demonstrating the applicability of our approach for achieving DM in various communication settings. To further validate our simulation results, a prototype of the proposed architecture controlled by a field-programmable gate array (FPGA) is realized, which achieves DM via an optimized coding sequence carried out by the learning-aided branch-and-bound algorithm corresponding to the states of the MTM LWA's unit cells. Experimental results confirm the theory behind the space-time-modulated MTM LWA in achieving DM, which is observed via both the spectral harmonic patterns and bit error rate (BER) measurements
    corecore