609 research outputs found

    Random attractors for stochastic evolution equations driven by fractional Brownian motion

    Get PDF
    The main goal of this article is to prove the existence of a random attractor for a stochastic evolution equation driven by a fractional Brownian motion with H(1/2,1)H\in (1/2,1). We would like to emphasize that we do not use the usual cohomology method, consisting of transforming the stochastic equation into a random one, but we deal directly with the stochastic equation. In particular, in order to get adequate a priori estimates of the solution needed for the existence of an absorbing ball, we will introduce stopping times to control the size of the noise. In a first part of this article we shall obtain the existence of a pullback attractor for the non-autonomous dynamical system generated by the pathwise mild solution of an nonlinear infinite-dimensional evolution equation with non--trivial H\"older continuous driving function. In a second part, we shall consider the random setup: stochastic equations having as driving process a fractional Brownian motion with H(1/2,1)H\in (1/2,1). Under a smallness condition for that noise we will show the existence and uniqueness of a random attractor for the stochastic evolution equation

    Random attractors for a class of stochastic partial differential equations driven by general additive noise

    Get PDF
    The existence of random attractors for a large class of stochastic partial differential equations (SPDE) driven by general additive noise is established. The main results are applied to various types of SPDE, as e.g. stochastic reaction-diffusion equations, the stochastic pp-Laplace equation and stochastic porous media equations. Besides classical Brownian motion, we also include space-time fractional Brownian Motion and space-time L\'evy noise as admissible random perturbations. Moreover, cases where the attractor consists of a single point are considered and bounds for the speed of attraction are obtained.Comment: 30 page

    Stochastic lattice dynamical systems with fractional noise

    Get PDF
    This article is devoted to study stochastic lattice dynamical systems driven by a fractional Brownian motion with Hurst parameter H(1/2,1)H\in(1/2,1). First of all, we investigate the existence and uniqueness of pathwise mild solutions to such systems by the Young integration setting and prove that the solution generates a random dynamical system. Further, we analyze the exponential stability of the trivial solution

    Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2,1)(1/2,1)

    Get PDF
    This paper addresses the exponential stability of the trivial solution of some types of evolution equations driven by H\"older continuous functions with H\"older index greater than 1/21/2. The results can be applied to the case of equations whose noisy inputs are given by a fractional Brownian motion BHB^H with covariance operator QQ, provided that H(1/2,1)H\in (1/2,1) and tr(Q){\rm tr}(Q) is sufficiently small.Comment: 19 page

    Stochastic Shell Models driven by a multiplicative fractional Brownian--motion

    Full text link
    We prove existence and uniqueness of the solution of a stochastic shell--model. The equation is driven by an infinite dimensional fractional Brownian--motion with Hurst--parameter H(1/2,1)H\in (1/2,1), and contains a non--trivial coefficient in front of the noise which satisfies special regularity conditions. The appearing stochastic integrals are defined in a fractional sense. First, we prove the existence and uniqueness of variational solutions to approximating equations driven by piecewise linear continuous noise, for which we are able to derive important uniform estimates in some functional spaces. Then, thanks to a compactness argument and these estimates, we prove that these variational solutions converge to a limit solution, which turns out to be the unique pathwise mild solution associated to the shell--model with fractional noise as driving process.Comment: 23 page

    Phase transitions driven by L\'evy stable noise: exact solutions and stability analysis of nonlinear fractional Fokker-Planck equations

    Full text link
    Phase transitions and effects of external noise on many body systems are one of the main topics in physics. In mean field coupled nonlinear dynamical stochastic systems driven by Brownian noise, various types of phase transitions including nonequilibrium ones may appear. A Brownian motion is a special case of L\'evy motion and the stochastic process based on the latter is an alternative choice for studying cooperative phenomena in various fields. Recently, fractional Fokker-Planck equations associated with L\'evy noise have attracted much attention and behaviors of systems with double-well potential subjected to L\'evy noise have been studied intensively. However, most of such studies have resorted to numerical computation. We construct an {\it analytically solvable model} to study the occurrence of phase transitions driven by L\'evy stable noise.Comment: submitted to EP
    corecore