1,459 research outputs found

    Building Efficient and Compact Data Structures for Simplicial Complexes

    Get PDF
    The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the Simplex Tree while retaining its functionalities. In addition, we propose two new data structures called the Maximal Simplex Tree (MxST) and the Simplex Array List (SAL). We analyze the compressed Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings.Comment: An extended abstract appeared in the proceedings of SoCG 201

    Group field theories for all loop quantum gravity

    Full text link
    Group field theories represent a 2nd quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the GFT formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.Comment: version published in New Journal of Physic

    Simplicial Homology for Future Cellular Networks

    Get PDF
    Simplicial homology is a tool that provides a mathematical way to compute the connectivity and the coverage of a cellular network without any node location information. In this article, we use simplicial homology in order to not only compute the topology of a cellular network, but also to discover the clusters of nodes still with no location information. We propose three algorithms for the management of future cellular networks. The first one is a frequency auto-planning algorithm for the self-configuration of future cellular networks. It aims at minimizing the number of planned frequencies while maximizing the usage of each one. Then, our energy conservation algorithm falls into the self-optimization feature of future cellular networks. It optimizes the energy consumption of the cellular network during off-peak hours while taking into account both coverage and user traffic. Finally, we present and discuss the performance of a disaster recovery algorithm using determinantal point processes to patch coverage holes

    Computing the kk-coverage of a wireless network

    Full text link
    Coverage is one of the main quality of service of a wirelessnetwork. kk-coverage, that is to be covered simultaneously by kknetwork nodes, is synonym of reliability and numerous applicationssuch as multiple site MIMO features, or handovers. We introduce here anew algorithm for computing the kk-coverage of a wirelessnetwork. Our method is based on the observation that kk-coverage canbe interpreted as kk layers of 11-coverage, or simply coverage. Weuse simplicial homology to compute the network's topology and areduction algorithm to indentify the layers of 11-coverage. Weprovide figures and simulation results to illustrate our algorithm.Comment: Valuetools 2019, Mar 2019, Palma de Mallorca, Spain. 2019. arXiv admin note: text overlap with arXiv:1802.0844

    On Topological Minors in Random Simplicial Complexes

    Full text link
    For random graphs, the containment problem considers the probability that a binomial random graph G(n,p)G(n,p) contains a given graph as a substructure. When asking for the graph as a topological minor, i.e., for a copy of a subdivision of the given graph, it is well-known that the (sharp) threshold is at p=1/np=1/n. We consider a natural analogue of this question for higher-dimensional random complexes Xk(n,p)X^k(n,p), first studied by Cohen, Costa, Farber and Kappeler for k=2k=2. Improving previous results, we show that p=Θ(1/n)p=\Theta(1/\sqrt{n}) is the (coarse) threshold for containing a subdivision of any fixed complete 22-complex. For higher dimensions k>2k>2, we get that p=O(n1/k)p=O(n^{-1/k}) is an upper bound for the threshold probability of containing a subdivision of a fixed kk-dimensional complex.Comment: 15 page
    corecore