10,837 research outputs found

    A generalized Ramsey excitation scheme with suppressed light shift

    Full text link
    We experimentally investigate a recently proposed optical excitation scheme [V.I. Yudin et al., Phys. Rev. A 82, 011804(R)(2010)] that is a generalization of Ramsey's method of separated oscillatory fields and consists of a sequence of three excitation pulses. The pulse sequence is tailored to produce a resonance signal which is immune to the light shift and other shifts of the transition frequency that are correlated with the interaction with the probe field. We investigate the scheme using a single trapped 171Yb+ ion and excite the highly forbidden 2S1/2-2F7/2 electric-octupole transition under conditions where the light shift is much larger than the excitation linewidth, which is in the Hertz range. The experiments demonstrate a suppression of the light shift by four orders of magnitude and an immunity against its fluctuations.Comment: 5 pages, 4 figure

    Laser frequency stabilization to a single ion

    Full text link
    A fundamental limit to the stability of a single-ion optical frequency standard is set by quantum noise in the measurement of the internal state of the ion. We discuss how the interrogation sequence and the processing of the atomic resonance signal can be optimized in order to obtain the highest possible stability under realistic experimental conditions. A servo algorithm is presented that stabilizes a laser frequency to the single-ion signal and that eliminates errors due to laser frequency drift. Numerical simulations of the servo characteristics are compared to experimental data from a frequency comparison of two single-ion standards based on a transition at 688 THz in 171Yb+. Experimentally, an instability sigma_y(100 s)=9*10^{-16} is obtained in the frequency difference between both standards.Comment: 15 pages, 5 figures, submitted to J. Phys.

    Revised experimental upper limit on the electric dipole moment of the neutron

    Get PDF
    We present for the first time a detailed and comprehensive analysis of the experimental results that set the current world sensitivity limit on the magnitude of the electric dipole moment (EDM) of the neutron. We have extended and enhanced our earlier analysis to include recent developments in the understanding of the effects of gravity in depolarizing ultracold neutrons; an improved calculation of the spectrum of the neutrons; and conservative estimates of other possible systematic errors, which are also shown to be consistent with more recent measurements undertaken with the apparatus. We obtain a net result of dn=−0.21±1.82×10−26  e cm, which may be interpreted as a slightly revised upper limit on the magnitude of the EDM of 3.0×10−26  e cm (90% C.L.) or 3.6×10−26  e cm (95% C.L.)

    Multiwavelength optical observations of chromospherically active binary systems V. FF UMa (2RE J0933+624): a system with orbital period variation

    Get PDF
    This is the fifth paper in a series aimed at studying the chromospheres of active binary systems using several optical spectroscopic indicators to obtain or improve orbital solution and fundamental stellar parameters. We present here the study of FF UMa (2RE J0933+624), a recently discovered, X-ray/EUV selected, active binary with strong H_alpha emission. The objectives of this work are, to find orbital solutions and define stellar parameters from precise radial velocities and carry out an extensive study of the optical indicators of chromospheric activity. We obtained high resolution echelle spectroscopic observations during five observing runs from 1998 to 2004. We found radial velocities by cross correlation with radial velocity standard stars to achieve the best orbital solution. We also measured rotational velocity by cross-correlation techniques and have studied the kinematic by galactic space- velocity components (U, V, W) and Eggen criteria. Finally, we have determined the chromospheric contribution in optical spectroscopic indicators, from Ca II H & K to Ca II IRT lines, using the spectral subtraction technique. We have found that this system presents an orbital period variation, higher than previously detected in other RS CVn systems. We determined an improved orbital solution, finding a circular orbit with a period of 3.274 days. We derived the stellar parameters, confirming the subgiant nature of the primary component and obtained rotational velocities (vsini), of 33.57 km/s and 32.38 km/s for the primary and secondary components respectively. From our kinematic study, we can deduce its membership to the Castor moving group. Finally, the activity study has given us a better understanding of the possible mechanisms that produce the orbital period variation.Comment: Latex file with 16 pages, 18 figures. Available at http://www.ucm.es/info/Astrof/invest/actividad/actividad_pub.html Accepted for publication in: Astronomy & Astrophysics (A&A
    corecore