8,687 research outputs found

    Coloring random graphs online without creating monochromatic subgraphs

    Full text link
    Consider the following random process: The vertices of a binomial random graph Gn,pG_{n,p} are revealed one by one, and at each step only the edges induced by the already revealed vertices are visible. Our goal is to assign to each vertex one from a fixed number rr of available colors immediately and irrevocably without creating a monochromatic copy of some fixed graph FF in the process. Our first main result is that for any FF and rr, the threshold function for this problem is given by p0(F,r,n)=n1/m1(F,r)p_0(F,r,n)=n^{-1/m_1^*(F,r)}, where m1(F,r)m_1^*(F,r) denotes the so-called \emph{online vertex-Ramsey density} of FF and rr. This parameter is defined via a purely deterministic two-player game, in which the random process is replaced by an adversary that is subject to certain restrictions inherited from the random setting. Our second main result states that for any FF and rr, the online vertex-Ramsey density m1(F,r)m_1^*(F,r) is a computable rational number. Our lower bound proof is algorithmic, i.e., we obtain polynomial-time online algorithms that succeed in coloring Gn,pG_{n,p} as desired with probability 1o(1)1-o(1) for any p(n)=o(n1/m1(F,r))p(n) = o(n^{-1/m_1^*(F,r)}).Comment: some minor addition

    Ramsey numbers for partially-ordered sets

    Full text link
    We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Tur\'an-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.Comment: 18 pages, 3 figures, 1 tabl

    Complexity of Computing the Anti-Ramsey Numbers for Paths

    Get PDF
    The anti-Ramsey numbers are a fundamental notion in graph theory, introduced in 1978, by Erd\" os, Simonovits and S\' os. For given graphs GG and HH the \emph{anti-Ramsey number} ar(G,H)\textrm{ar}(G,H) is defined to be the maximum number kk such that there exists an assignment of kk colors to the edges of GG in which every copy of HH in GG has at least two edges with the same color. There are works on the computational complexity of the problem when HH is a star. Along this line of research, we study the complexity of computing the anti-Ramsey number ar(G,Pk)\textrm{ar}(G,P_k), where PkP_k is a path of length kk. First, we observe that when k=Ω(n)k = \Omega(n), the problem is hard; hence, the challenging part is the computational complexity of the problem when kk is a fixed constant. We provide a characterization of the problem for paths of constant length. Our first main contribution is to prove that computing ar(G,Pk)\textrm{ar}(G,P_k) for every integer k>2k>2 is NP-hard. We obtain this by providing several structural properties of such coloring in graphs. We investigate further and show that approximating ar(G,P3)\textrm{ar}(G,P_3) to a factor of n1/2ϵn^{-1/2 - \epsilon} is hard already in 33-partite graphs, unless P=NP. We also study the exact complexity of the precolored version and show that there is no subexponential algorithm for the problem unless ETH fails for any fixed constant kk. Given the hardness of approximation and parametrization of the problem, it is natural to study the problem on restricted graph families. We introduce the notion of color connected coloring and employing this structural property. We obtain a linear time algorithm to compute ar(G,Pk)\textrm{ar}(G,P_k), for every integer kk, when the host graph, GG, is a tree

    Ramsey Goodness and Beyond

    Full text link
    In a seminal paper from 1983, Burr and Erdos started the systematic study of Ramsey numbers of cliques vs. large sparse graphs, raising a number of problems. In this paper we develop a new approach to such Ramsey problems using a mix of the Szemeredi regularity lemma, embedding of sparse graphs, Turan type stability, and other structural results. We give exact Ramsey numbers for various classes of graphs, solving all but one of the Burr-Erdos problems.Comment: A new reference is adde

    Chromatic Ramsey number of acyclic hypergraphs

    Get PDF
    Suppose that TT is an acyclic rr-uniform hypergraph, with r2r\ge 2. We define the (tt-color) chromatic Ramsey number χ(T,t)\chi(T,t) as the smallest mm with the following property: if the edges of any mm-chromatic rr-uniform hypergraph are colored with tt colors in any manner, there is a monochromatic copy of TT. We observe that χ(T,t)\chi(T,t) is well defined and Rr(T,t)1r1+1χ(T,t)E(T)t+1\left\lceil {R^r(T,t)-1\over r-1}\right \rceil +1 \le \chi(T,t)\le |E(T)|^t+1 where Rr(T,t)R^r(T,t) is the tt-color Ramsey number of HH. We give linear upper bounds for χ(T,t)\chi(T,t) when T is a matching or star, proving that for r2,k1,t1r\ge 2, k\ge 1, t\ge 1, χ(Mkr,t)(t1)(k1)+2k\chi(M_k^r,t)\le (t-1)(k-1)+2k and χ(Skr,t)t(k1)+2\chi(S_k^r,t)\le t(k-1)+2 where MkrM_k^r and SkrS_k^r are, respectively, the rr-uniform matching and star with kk edges. The general bounds are improved for 33-uniform hypergraphs. We prove that χ(Mk3,2)=2k\chi(M_k^3,2)=2k, extending a special case of Alon-Frankl-Lov\'asz' theorem. We also prove that χ(S23,t)t+1\chi(S_2^3,t)\le t+1, which is sharp for t=2,3t=2,3. This is a corollary of a more general result. We define H[1]H^{[1]} as the 1-intersection graph of HH, whose vertices represent hyperedges and whose edges represent intersections of hyperedges in exactly one vertex. We prove that χ(H)χ(H[1])\chi(H)\le \chi(H^{[1]}) for any 33-uniform hypergraph HH (assuming χ(H[1])2\chi(H^{[1]})\ge 2). The proof uses the list coloring version of Brooks' theorem.Comment: 10 page
    corecore