8,643 research outputs found

    Ramsey numbers for partially-ordered sets

    Full text link
    We present a refinement of Ramsey numbers by considering graphs with a partial ordering on their vertices. This is a natural extension of the ordered Ramsey numbers. We formalize situations in which we can use arbitrary families of partially-ordered sets to form host graphs for Ramsey problems. We explore connections to well studied Tur\'an-type problems in partially-ordered sets, particularly those in the Boolean lattice. We find a strong difference between Ramsey numbers on the Boolean lattice and ordered Ramsey numbers when the partial ordering on the graphs have large antichains.Comment: 18 pages, 3 figures, 1 tabl

    Ramsey numbers of ordered graphs

    Full text link
    An ordered graph is a pair G=(G,)\mathcal{G}=(G,\prec) where GG is a graph and \prec is a total ordering of its vertices. The ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is the minimum number NN such that every ordered complete graph with NN vertices and with edges colored by two colors contains a monochromatic copy of G\mathcal{G}. In contrast with the case of unordered graphs, we show that there are arbitrarily large ordered matchings Mn\mathcal{M}_n on nn vertices for which R(Mn)\overline{R}(\mathcal{M}_n) is superpolynomial in nn. This implies that ordered Ramsey numbers of the same graph can grow superpolynomially in the size of the graph in one ordering and remain linear in another ordering. We also prove that the ordered Ramsey number R(G)\overline{R}(\mathcal{G}) is polynomial in the number of vertices of G\mathcal{G} if the bandwidth of G\mathcal{G} is constant or if G\mathcal{G} is an ordered graph of constant degeneracy and constant interval chromatic number. The first result gives a positive answer to a question of Conlon, Fox, Lee, and Sudakov. For a few special classes of ordered paths, stars or matchings, we give asymptotically tight bounds on their ordered Ramsey numbers. For so-called monotone cycles we compute their ordered Ramsey numbers exactly. This result implies exact formulas for geometric Ramsey numbers of cycles introduced by K\'arolyi, Pach, T\'oth, and Valtr.Comment: 29 pages, 13 figures, to appear in Electronic Journal of Combinatoric

    EDGE-ORDERED RAMSEY NUMBERS

    Get PDF
    We introduce and study a variant of Ramsey numbers for edge-ordered graphs, that is, graphs with linearly ordered sets of edges. The edge-ordered Ramsey number R_e(G) of an edge-ordered graph G is the minimum positive integer N such that there exists an edge-ordered complete graph K_N on N vertices such that every 2-coloring of the edges of K_N contains a monochromatic copy of G as an edge-ordered subgraph of K_N. We prove that the edge-ordered Ramsey number R_e(G) is finite for every edge-ordered graph G and we obtain better estimates for special classes of edge-ordered graphs. In particular, we prove R_e(G) <= 2^{O(n^3\log{n})} for every bipartite edge-ordered graph G on n vertices. We also introduce a natural class of edge-orderings, called \emph{lexicographic edge-orderings}, for which we can prove much better upper bounds on the corresponding edge-ordered Ramsey numbers

    Edge-ordered Ramsey numbers

    Get PDF
    We introduce and study a variant of Ramsey numbers for edge-ordered graphs, that is, graphs with linearly ordered sets of edges. The edge-ordered Ramsey number Re(G)\overline{R}_e(\mathfrak{G}) of an edge-ordered graph G\mathfrak{G} is the minimum positive integer NN such that there exists an edge-ordered complete graph KN\mathfrak{K}_N on NN vertices such that every 2-coloring of the edges of KN\mathfrak{K}_N contains a monochromatic copy of G\mathfrak{G} as an edge-ordered subgraph of KN\mathfrak{K}_N. We prove that the edge-ordered Ramsey number Re(G)\overline{R}_e(\mathfrak{G}) is finite for every edge-ordered graph G\mathfrak{G} and we obtain better estimates for special classes of edge-ordered graphs. In particular, we prove Re(G)2O(n3logn)\overline{R}_e(\mathfrak{G}) \leq 2^{O(n^3\log{n})} for every bipartite edge-ordered graph G\mathfrak{G} on nn vertices. We also introduce a natural class of edge-orderings, called lexicographic edge-orderings, for which we can prove much better upper bounds on the corresponding edge-ordered Ramsey numbers.Comment: Minor revision, 16 pages, 1 figure. An extended abstract of this paper will appeared in the Eurocomb 2019 proceedings in Acta Mathematica Universitatis Comenianae. The paper has been accepted to the European Journal of Combinatoric

    Ordered Ramsey numbers

    Get PDF
    Given a labeled graph HH with vertex set {1,2,,n}\{1, 2,\ldots,n\}, the ordered Ramsey number r<(H)r_<(H) is the minimum NN such that every two-coloring of the edges of the complete graph on {1,2,,N}\{1, 2, \ldots,N\} contains a copy of HH with vertices appearing in the same order as in HH. The ordered Ramsey number of a labeled graph HH is at least the Ramsey number r(H)r(H) and the two coincide for complete graphs. However, we prove that even for matchings there are labelings where the ordered Ramsey number is superpolynomial in the number of vertices. Among other results, we also prove a general upper bound on ordered Ramsey numbers which implies that there exists a constant cc such that r<(H)r(H)clog2nr_<(H) \leq r(H)^{c \log^2 n} for any labeled graph HH on vertex set {1,2,,n}\{1,2, \dots, n\}.Comment: 27 page
    corecore