4,796 research outputs found

    Approximation bounds on maximum edge 2-coloring of dense graphs

    Full text link
    For a graph GG and integer q2q\geq 2, an edge qq-coloring of GG is an assignment of colors to edges of GG, such that edges incident on a vertex span at most qq distinct colors. The maximum edge qq-coloring problem seeks to maximize the number of colors in an edge qq-coloring of a graph GG. The problem has been studied in combinatorics in the context of {\em anti-Ramsey} numbers. Algorithmically, the problem is NP-Hard for q2q\geq 2 and assuming the unique games conjecture, it cannot be approximated in polynomial time to a factor less than 1+1/q1+1/q. The case q=2q=2, is particularly relevant in practice, and has been well studied from the view point of approximation algorithms. A 22-factor algorithm is known for general graphs, and recently a 5/35/3-factor approximation bound was shown for graphs with perfect matching. The algorithm (which we refer to as the matching based algorithm) is as follows: "Find a maximum matching MM of GG. Give distinct colors to the edges of MM. Let C1,C2,,CtC_1,C_2,\ldots, C_t be the connected components that results when M is removed from G. To all edges of CiC_i give the (M+i)(|M|+i)th color." In this paper, we first show that the approximation guarantee of the matching based algorithm is (1+2δ)(1 + \frac {2} {\delta}) for graphs with perfect matching and minimum degree δ\delta. For δ4\delta \ge 4, this is better than the 53\frac {5} {3} approximation guarantee proved in {AAAP}. For triangle free graphs with perfect matching, we prove that the approximation factor is (1+1δ1)(1 + \frac {1}{\delta - 1}), which is better than 5/35/3 for δ3\delta \ge 3.Comment: 11pages, 3 figure

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some FFF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some FFF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all kk0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Ramsey expansions of metrically homogeneous graphs

    Full text link
    We discuss the Ramsey property, the existence of a stationary independence relation and the coherent extension property for partial isometries (coherent EPPA) for all classes of metrically homogeneous graphs from Cherlin's catalogue, which is conjectured to include all such structures. We show that, with the exception of tree-like graphs, all metric spaces in the catalogue have precompact Ramsey expansions (or lifts) with the expansion property. With two exceptions we can also characterise the existence of a stationary independence relation and the coherent EPPA. Our results can be seen as a new contribution to Ne\v{s}et\v{r}il's classification programme of Ramsey classes and as empirical evidence of the recent convergence in techniques employed to establish the Ramsey property, the expansion (or lift or ordering) property, EPPA and the existence of a stationary independence relation. At the heart of our proof is a canonical way of completing edge-labelled graphs to metric spaces in Cherlin's classes. The existence of such a "completion algorithm" then allows us to apply several strong results in the areas that imply EPPA and respectively the Ramsey property. The main results have numerous corollaries on the automorphism groups of the Fra\"iss\'e limits of the classes, such as amenability, unique ergodicity, existence of universal minimal flows, ample generics, small index property, 21-Bergman property and Serre's property (FA).Comment: 57 pages, 14 figures. Extends results of arXiv:1706.00295. Minor revisio

    Local colourings and monochromatic partitions in complete bipartite graphs

    Full text link
    We show that for any 22-local colouring of the edges of the balanced complete bipartite graph Kn,nK_{n,n}, its vertices can be covered with at most~33 disjoint monochromatic paths. And, we can cover almost all vertices of any complete or balanced complete bipartite rr-locally coloured graph with O(r2)O(r^2) disjoint monochromatic cycles.\\ We also determine the 22-local bipartite Ramsey number of a path almost exactly: Every 22-local colouring of the edges of Kn,nK_{n,n} contains a monochromatic path on nn vertices.Comment: 18 page
    corecore