111 research outputs found

    Ramanujan Complexes and bounded degree topological expanders

    Full text link
    Expander graphs have been a focus of attention in computer science in the last four decades. In recent years a high dimensional theory of expanders is emerging. There are several possible generalizations of the theory of expansion to simplicial complexes, among them stand out coboundary expansion and topological expanders. It is known that for every d there are unbounded degree simplicial complexes of dimension d with these properties. However, a major open problem, formulated by Gromov, is whether bounded degree high dimensional expanders, according to these definitions, exist for d >= 2. We present an explicit construction of bounded degree complexes of dimension d = 2 which are high dimensional expanders. More precisely, our main result says that the 2-skeletons of the 3-dimensional Ramanujan complexes are topological expanders. Assuming a conjecture of Serre on the congruence subgroup property, infinitely many of them are also coboundary expanders.Comment: To appear in FOCS 201

    Hypergraph expanders from Cayley graphs

    Get PDF
    We present a simple mechanism, which can be randomised, for constructing sparse 33-uniform hypergraphs with strong expansion properties. These hypergraphs are constructed using Cayley graphs over Z2t\mathbb{Z}_2^t and have vertex degree which is polylogarithmic in the number of vertices. Their expansion properties, which are derived from the underlying Cayley graphs, include analogues of vertex and edge expansion in graphs, rapid mixing of the random walk on the edges of the skeleton graph, uniform distribution of edges on large vertex subsets and the geometric overlap property.Comment: 13 page

    Coboundary expanders

    Full text link
    We describe a natural topological generalization of edge expansion for graphs to regular CW complexes and prove that this property holds with high probability for certain random complexes.Comment: Version 2: significant rewrite. 18 pages, title changed, and main theorem extended to more general random complexe

    High Dimensional Random Walks and Colorful Expansion

    Get PDF
    Random walks on bounded degree expander graphs have numerous applications, both in theoretical and practical computational problems. A key property of these walks is that they converge rapidly to their stationary distribution. In this work we {\em define high order random walks}: These are generalizations of random walks on graphs to high dimensional simplicial complexes, which are the high dimensional analogues of graphs. A simplicial complex of dimension dd has vertices, edges, triangles, pyramids, up to dd-dimensional cells. For any 0≤i<d0 \leq i < d, a high order random walk on dimension ii moves between neighboring ii-faces (e.g., edges) of the complex, where two ii-faces are considered neighbors if they share a common (i+1)(i+1)-face (e.g., a triangle). The case of i=0i=0 recovers the well studied random walk on graphs. We provide a {\em local-to-global criterion} on a complex which implies {\em rapid convergence of all high order random walks} on it. Specifically, we prove that if the 11-dimensional skeletons of all the links of a complex are spectral expanders, then for {\em all} 0≤i<d0 \le i < d the high order random walk on dimension ii converges rapidly to its stationary distribution. We derive our result through a new notion of high dimensional combinatorial expansion of complexes which we term {\em colorful expansion}. This notion is a natural generalization of combinatorial expansion of graphs and is strongly related to the convergence rate of the high order random walks. We further show an explicit family of {\em bounded degree} complexes which satisfy this criterion. Specifically, we show that Ramanujan complexes meet this criterion, and thus form an explicit family of bounded degree high dimensional simplicial complexes in which all of the high order random walks converge rapidly to their stationary distribution.Comment: 27 page
    • …
    corecore