72 research outputs found

    Radar and satellite observations of precipitation: space time variability, cross-validation, and fusion

    Get PDF
    2017 Fall.Includes bibliographical references.Rainfall estimation based on satellite measurements has proven to be very useful for various applications. A number of precipitation products at multiple time and space scales have been developed based on satellite observations. For example, the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center has developed a morphing technique (i.e., CMORPH) to produce global precipitation products by combining existing space-based observations and retrievals. The CMORPH products are derived using infrared (IR) brightness temperature information observed by geostationary satellites and passive microwave-(PMW) based precipitation retrievals from low earth orbit satellites. Although space-based precipitation products provide an excellent tool for regional, local, and global hydrologic and climate studies as well as improved situational awareness for operational forecasts, their accuracy is limited due to restrictions of spatial and temporal sampling and the applied parametric retrieval algorithms, particularly for light precipitation or extreme events such as heavy rain. In contrast, ground-based radar is an excellent tool for quantitative precipitation estimation (QPE) at finer space-time scales compared to satellites. This is especially true after the implementation of dual-polarization upgrades and further enhancement by urban scale X-band radar networks. As a result, ground radars are often critical for local scale rainfall estimation and for enabling forecasters to issue severe weather watches and warnings. Ground-based radars are also used for validation of various space measurements and products. In this study, a new S-band dual-polarization radar rainfall algorithm (DROPS2.0) is developed that can be applied to the National Weather Service (NWS) operational Weather Surveillance Radar-1988 Doppler (WSR-88DP) network. In addition, a real-time high-resolution QPE system is developed for the Engineering Research Center for Collaborative Adaptive Sensing of the Atmosphere (CASA) Dallas-Fort Worth (DFW) dense radar network, which is deployed for urban hydrometeorological applications via high-resolution observations of the lower atmosphere. The CASA/DFW QPE system is based on the combination of a standard WSR-88DP (i.e., KFWS radar) and a high-resolution dual-polarization X-band radar network. The specific radar rainfall methodologies at Sand X-band frequencies, as well as the fusion methodology merging radar observations at different temporal resolutions are investigated. Comparisons between rainfall products from the DFW radar network and rainfall measurements from rain gauges are conducted for a large number of precipitation events over several years of operation, demonstrating the excellent performance of this urban QPE system. The real-time DFW QPE products are extensively used for flood warning operations and hydrological modelling. The high-resolution DFW QPE products also serve as a reliable dataset for validation of Global Precipitation Measurement (GPM) satellite precipitation products. This study also introduces a machine learning-based data fusion system termed deep multi-layer perceptron (DMLP) to improve satellite-based precipitation estimation through incorporating ground radar-derived rainfall products. In particular, the CMORPH technique is applied first to derive combined PMW-based rainfall retrievals and IR data from multiple satellites. The combined PMW and IR data then serve as input to the proposed DMLP model. The high-quality rainfall products from ground radars are used as targets to train the DMLP model. In this dissertation, the prototype architecture of the DMLP model is detailed. The urban scale application over the DFW metroplex is presented. The DMLP-based rainfall products are evaluated using currently operational CMORPH products and surface rainfall measurements from gauge networks

    Radar multi-sensor (RAMS) quantitative precipitation estimation (QPE)

    Get PDF
    Includes bibliographical references.2015 Summer.Quantitative precipitation estimation (QPE) continues to be one of the principal objectives for weather researchers and forecasters. The ability of radar to measure over broad spatial areas in short temporal successions encourages its application in the pursuit of accurate rainfall estimation, where radar reflectivity-rainfall (Z-R) relations have been traditionally used to derive quantitative precipitation estimation. The purpose of this research is to present the development of a regional dual polarization QPE process known as the RAdar Multi-Sensor QPE (RAMS QPE). This scheme applies the dual polarization radar rain rate estimation algorithms developed at Colorado State University into an adaptable QPE system. The methodologies used to combine individual radar scans, and then merge them into a mosaic are described. The implementation and evaluation is performed over a domain that occurs over a complex terrain environment, such that local radar coverage is compromised by blockage. This area of interest is concentrated around the Pigeon River Basin near Asheville, NC. In this mountainous locale, beam blockage, beam overshooting, orographic enhancement, and the unique climactic conditions complicate the development of reliable QPE's from radar. The QPE precipitation fields evaluated in this analysis will stem from the dual polarization radar data obtained from the local NWS WSR-88DP radars as well as the NASA NPOL research radar

    A Network of Portable, Low-Cost, X-Band Radars

    Get PDF
    Radar is a unique tool to get an overview on the weather situation, given its high spatio- temporal resolution. Over 60 years, researchers have been investigating ways for obtaining the best use of radar. As a result we often find assurances on how much radar is a useful tool, and it is! After this initial statement, however, regularly comes a long list on how to increase the accuracy of radar or in what direction to move for improving it. Perhaps we should rather ask: is the resulting data good enough for our application? The answers are often more complicated than desired. At first, some people expect miracles. Then, when their wishes are disappointed, they discard radar as a tool: both attitudes are wrong; radar is a unique tool to obtain an excellent overview on what is happening: when and where it is happening. At short ranges, we may even get good quantitative data. But at longer ranges it may be impossible to obtain the desired precision, e.g. the precision needed to alert people living in small catchments in mountainous terrain. We would have to set the critical limit for an alert so low that this limit would lead to an unacceptable rate of false alarm

    Effects of spatial resolution on radar-based precipitation estimation using sub-kilometer X-band radar measurements

    Get PDF
    Known for the ability to observe precipitation at spatial resolution higher than rain gauge networks and satellite products, weather radars allow us to measure precipitation at spatial resolutions of 1 kilometer (typical resolution for operational radars) and a few hundred meters (often used in research activities). In principle, we can operate a weather radar at resolution higher than 100m and the expectation is that radar data at higher spatial resolution can provide more information. However, there is no systematic research about whether the additional information is noise or useful data contributing to the quantitative precipitation estimation. In order to quantitatively investigate the changes, as either benefits or drawbacks, caused by increasing the spatial resolution of radar measurements, we set up an X-band radar field experiment from May to October in 2017 in the Stuttgart metropolitan region. The scan strategy consists of two quasi-simultaneous scans with a 75-m and a 250-m radial resolution respectively. They are named as the fine scan and the coarse scan, respectively. Both scans are compared to each other in terms of the radar data quality and their radar-based precipitation estimates. The primary results from these comparisons between the radar data of these two scans show that, in contrast to the coarse scan, the fine scan data are characterized with losses of weak echoes, are more subjected to external signals and second-trip echoes (drawback), are more effective in removing non-meteorological echoes (benefit), are more skillful in delineating convective storms (benefit), and show a better agreement with the external reference data (benefit)

    Nowcasting for a high-resolution weather radar network

    Get PDF
    2010 Fall.Includes bibliographical references.Short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories and is of great practical importance. Nowcasting using weather radar reflectivity data has been shown to be particularly useful. The Collaborative Adaptive Sensing of the Atmosphere (CASA) radar network provides high-resolution reflectivity data amenable to producing valuable nowcasts. The high-resolution nature of CASA data requires the use of an efficient nowcasting approach, which necessitated the development of the Dynamic Adaptive Radar Tracking of Storms (DARTS) and sinc kernel-based advection nowcasting methodology. This methodology was implemented operationally in the CASA Distributed Collaborative Adaptive Sensing (DCAS) system in a robust and efficient manner necessitated by the high-resolution nature of CASA data and distributed nature of the environment in which the nowcasting system operates. Nowcasts up to 10 min to support emergency manager decision-making and 1-5 min to steer the CASA radar nodes to better observe the advecting storm patterns for forecasters and researchers are currently provided by this system. Results of nowcasting performance during the 2009 CASA IP experiment are presented. Additionally, currently state-of-the-art scale-based filtering methods were adapted and evaluated for use in the CASA DCAS to provide a scale-based analysis of nowcasting. DARTS was also incorporated in the Weather Support to Deicing Decision Making system to provide more accurate and efficient snow water equivalent nowcasts for aircraft deicing decision support relative to the radar-based nowcasting method currently used in the operational system. Results of an evaluation using data collected from 2007-2008 by the Weather Service Radar-1988 Doppler (WSR-88D) located near Denver, Colorado, and the National Center for Atmospheric Research Marshall Test Site near Boulder, Colorado, are presented. DARTS was also used to study the short-term predictability of precipitation patterns depicted by high-resolution reflectivity data observed at microalpha (0.2-2 km) to mesobeta (20-200 km) scales by the CASA radar network. Additionally, DARTS was used to investigate the performance of nowcasting rainfall fields derived from specific differential phase estimates, which have been shown to provide more accurate and robust rainfall estimates compared to those made from radar reflectivity data

    Application of the variational method for correction of wet ice attenuation for X-band dual-polarized radar

    Get PDF
    2011 Fall.Includes bibliographical references.In recent years there has been a huge interest in the development and use of dual-polarized radar systems operating at X-band (~10 GHz) region of the electromagnetic spectrum. This is due to the fact that these systems are smaller and cheaper allowing for a network to be built, for example, for short range (typically < 30-40 km) hydrological applications. Such networks allow for higher cross-beam spatial resolutions while cheaper pedestals supporting a smaller antenna also allows for higher temporal resolution as compared with large S-band (long range) systems used by the National Weather Service. Dual-polarization radar techniques allow for correction of the strong attenuation of the electromagnetic radar signal due to rain at X-band and higher frequencies. However, practical attempts to develop reliable correction algorithms have been cumbered by the need to deal with the rather large statistical fluctuations or "noise" in the measured polarization parameters. Recently, the variational method was proposed, which overcomes this problem by using the forward model for polarization variables, and uses iterative approach to minimize the difference between modeled and observed values, in a least squares sense. This approach also allows for detection of hail and determination of the fraction of reflectivity due to the hail when the precipitation shaft is composed of a mixture of rain and hail. It was shown that this approach works well with S-band radar data. The purpose of this research is to extend the application of the variational method to the X-band dual-polarization radar data. The main objective is to correct for attenuation caused by rain mixed with wet ice hydrometeors (e.g., hail) in deep convection. The standard dual-polarization method of attenuation-correction using the differential propagation phase between H and V polarized waves cannot account for wet ice hydrometeors along the propagation path. The ultimate goal is to develop a feasible and robust variational-based algorithm for rain and hail attenuation correction for the Collaborate Adaptive Sensing of the Atmosphere (CASA) project

    Measuring and modeling rainfall with terrestrial sensors and radar : implications for rainfall heterogeneity and discharge

    Get PDF
    Field of study: Water resources.Dr. Neil Fox, Dissertation Supervisor.Includes vita."December 2017."Quantitative precipitation estimates are fundamental for hydrometeorological analyses. Radars provide a superior spatiotemporal advantage over terrestrial-based precipitation gauges to provide such measures of rainfall. However, many regions of the Continental US (CONUS) reside outside of the optimal range of weather radar surveillance (i.e., 100 km), with few studies analyzing the performance of radar rain rate estimates beyond this range. Several years' worth of radar rain rate estimates were analyzed from distant S-band Weather Surveillance Radars -- 1988 Doppler (WSR-88D) series, demonstrating poor performance in quantitative precipitation estimates (QPE's) at distances beyond 150 km. Furthermore, these S-band radar rain rates were determined to be significantly (p < 0.10) less accurate in Quantitative Precipitation Estimates (QPE's) when compared to a locally-sited X-band dual polarimetric radar. In general, S-band radars were best utilized when implementing R(Z,ZDR) algorithms, with the bulk of QPE errors due to missed precipitation, whereas the X-band radar was superior overall with either R(Z,ZDR) or R(ZDR,KDP) with errors primarily due to false alarms. These radar QPE's were then used as input to a physically-based hydrologic model, Vflo, which showed superior performance over spatially-averaged rain gauges, which sometimes missed precipitation events. The results presented demonstrate the importance of choosing the proper radar QPE datasets for hydrometeorological studies.Includes bibliographical references

    Advanced Remote Sensing Precipitation Input for Improved Runoff Simulation : Local to regional scale modelling

    Get PDF
    Accurate precipitation data are crucial for hydrological modelling and rainwater runoff management. Precipitation variability exists through a wide range of spatial and temporal scales and cannot be captured well using sparse rain gauge networks. This limitation is further emphasised for urban and mountainous catchments, especially under global warming, causing an increased frequency of extreme events. Recent advances in remote sensing (RS) techniques make monitoring precipitation possible over larger areas at more regular resolutions than conventional rain gauge networks. The RS data can be biased mainly due to the indirect estimations prone to multiple error sources and temporally discrete observations. The wealth of spatiotemporal precipitation data by RS, however, calls for developing data-driven solutions for both the bias correction and hydrological modelling that, in turn, requires new procedures to assure generalization of the existing methods. The present dissertation comprises a comprehensive summary followed by five appended papers, attempting to evaluate quantitative precipitation estimations (QPE) by state-of-the-art instruments/products for local and regional hydrological applications. Accordingly, two recently installed dual polarimetric doppler X-band weather radars (X-WRs) in southern Sweden and multiple Global Precipitation Mission (GPM) products in Iran were studied at the relevant scales for urban hydrology (1–5-min and sub-km) and large water supply river–reservoir system operation (daily-monthly and 0.1°), respectively. The validation against rain gauge observations (Paper I and II) showed a significant dependency of the X-WR and GPM precipitation errors on the radial distance and regional precipitation pattern, respectively. Taking observations from local tipping bucket rain gauges at the 1–30-km ranges as a reference, the apparent problems with a single X-WR is related to the attenuation during heavy rains and overshooting (at higher elevation angle scans). An internationally bias-corrected GPM product called GPM-IMERG-Final shows a generally good correlation to synoptic observations of over 300 rain gauges in Iran except for extreme observations that are much better predicted by the GPM-IMERG Late product during spring, summer, and autumn seasons. To leverage the wealth of spatiotemporally complete and validated precipitation data for hydrological modelling, two novel data-driven procedures using artificial neural networks (ANNs) were developed. As in Paper III, the formulation of the new ANN input variables, namely, ECOVs and CCOVs, representing the event- and catchment-specific areal precipitation coverage ratios, improve monthly runoff estimations in all the studied sub-catchments of the Karkheh River basin (KRB) in the mountainous semi-arid climate of western Iran. Merging the doppler and dual-polarization data in the overlapping coverage of the two XWRs (Paper IV) via an ANN-based QPE improves rainfall detection and accuracy. ANN-assisted estimation of rainfall quantiles, compared to the merging with an empirically based regression model, also shows better results especially related to the extreme 5-min data. Finally, Paper V describes the impact of human activities such as agricultural developments that can equally affect the runoff variation. This fact is considered in Paper III by including MODIS Terra products as additional inputs

    OBSERVATIONAL STUDY OF RAIN MICROPHYSICS AND RAIN RETRIEVAL USING POLARIMETRIC RADAR DATA

    Get PDF
    Accurate quantitative precipitation estimation (QPE) and quantitative precipitation forecasts (QPF) require accurate microphysical parameterization/modeling of the precipitation. This study presents the modeling of rain microphysics and the application of polarimetric weather radar on rain retrievals. There are three topics addressed in this study. The first topic is the study of raindrop size distribution (DSD) through in-situ disdrometer observations. The observational error of disdrometer is quantified and corresponding error effects in developing DSD model are analyzed. The second topic is the characterization of rain microphysics with the linkage to radar observations. Empirical relations of rain-radar variables are developed for X-, C- and S-band polarimetric radars. The third topic is the retrieval of DSD parameters from polarimetric radar data (PRD). Three different approaches: direct retrieval, Bayesian retrieval and variational retrieval, are introduced. The latter two methods are promising with the optimal use of radar data. Their performance and potential are analyzed and discussed
    • …
    corecore