13,015 research outputs found

    Meta-heuristic algorithms for optimized network flow wavelet-based image coding

    Get PDF
    Optimal multipath selection to maximize the received multiple description coding (MDCs) in a lossy network model is proposed. Multiple description scalar quantization (MDSQ) has been applied to the wavelet coefficients of a color image to generate the MDCs which are combating transmission loss over lossy networks. In the networks, each received description raises the reconstruction quality of an MDC-coded signal (image, audio or video). In terms of maximizing the received descriptions, a greater number of optimal routings between source and destination must be obtained. The rainbow network flow (RNF) collaborated with effective meta-heuristic algorithms is a good approach to resolve it. Two meta-heuristic algorithms which are genetic algorithm (GA) and particle swarm optimization (PSO) have been utilized to solve the multi-objective optimization routing problem for finding optimal routings each of which is assigned as a distinct color by RNF to maximize the coded descriptions in a network model. By employing a local search based priority encoding method, each individual in GA and particle in PSO is represented as a potential solution. The proposed algorithms are compared with the multipath Dijkstra algorithm (MDA) for both finding optimal paths and providing reliable multimedia communication. The simulations run over various random network topologies and the results show that the PSO algorithm finds optimal routings effectively and maximizes the received MDCs with assistance of RNF, leading to reduce packet loss and increase throughput

    Exact Cover with light

    Full text link
    We suggest a new optical solution for solving the YES/NO version of the Exact Cover problem by using the massive parallelism of light. The idea is to build an optical device which can generate all possible solutions of the problem and then to pick the correct one. In our case the device has a graph-like representation and the light is traversing it by following the routes given by the connections between nodes. The nodes are connected by arcs in a special way which lets us to generate all possible covers (exact or not) of the given set. For selecting the correct solution we assign to each item, from the set to be covered, a special integer number. These numbers will actually represent delays induced to light when it passes through arcs. The solution is represented as a subray arriving at a certain moment in the destination node. This will tell us if an exact cover does exist or not.Comment: 20 pages, 4 figures, New Generation Computing, accepted, 200

    Wireless Inter-Session Network Coding - An Approach Using Virtual Multicasts

    Get PDF
    This paper addresses the problem of inter-session network coding to maximize throughput for multiple communication sessions in wireless networks. We introduce virtual multicast connections which can extract packets from original sessions and code them together. Random linear network codes can be used for these virtual multicasts. The problem can be stated as a flow-based convex optimization problem with side constraints. The proposed formulation provides a rate region which is at least as large as the region without inter-session network coding. We show the benefits of our technique for several scenarios by means of simulation.United States. Defense Advanced Research Projects Agency (Subcontract 18870740-37362-C

    Towards adaptive multi-robot systems: self-organization and self-adaptation

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.The development of complex systems ensembles that operate in uncertain environments is a major challenge. The reason for this is that system designers are not able to fully specify the system during specification and development and before it is being deployed. Natural swarm systems enjoy similar characteristics, yet, being self-adaptive and being able to self-organize, these systems show beneficial emergent behaviour. Similar concepts can be extremely helpful for artificial systems, especially when it comes to multi-robot scenarios, which require such solution in order to be applicable to highly uncertain real world application. In this article, we present a comprehensive overview over state-of-the-art solutions in emergent systems, self-organization, self-adaptation, and robotics. We discuss these approaches in the light of a framework for multi-robot systems and identify similarities, differences missing links and open gaps that have to be addressed in order to make this framework possible
    • …
    corecore