1,082 research outputs found

    Symmetric colorings of polypolyhedra

    Full text link
    Polypolyhedra (after R. Lang) are compounds of edge-transitive 1-skeleta. There are 54 topologically different polypolyhedra, and each has icosidodecahedral, cuboctahedral, or tetrahedral symmetry, all are realizable as modular origami models with one module per skeleton edge. Consider a coloring in which each edge of a given component receives a different color, and where the coloring (up to global color permutation) is invariant under the polypolyhedron's symmetry group. On the Five Intersecting Tetrahedra, the edges of each color form visual bands on the model, and correspond to matchings on the dodecahedron graph. We count the number of such colorings and give three proofs. For each of the non-polygon-component polypolyhedra, there is a corresponding matching coloring, and we count the number of these matching colorings. For some of the non-polygon-component polypolyhedra, there is a corresponding visual-band coloring, and we count the number of these band colorings

    Boolean algebras and Lubell functions

    Full text link
    Let 2[n]2^{[n]} denote the power set of [n]:={1,2,...,n}[n]:=\{1,2,..., n\}. A collection \B\subset 2^{[n]} forms a dd-dimensional {\em Boolean algebra} if there exist pairwise disjoint sets X0,X1,...,Xd⊆[n]X_0, X_1,..., X_d \subseteq [n], all non-empty with perhaps the exception of X0X_0, so that \B={X_0\cup \bigcup_{i\in I} X_i\colon I\subseteq [d]}. Let b(n,d)b(n,d) be the maximum cardinality of a family \F\subset 2^X that does not contain a dd-dimensional Boolean algebra. Gunderson, R\"odl, and Sidorenko proved that b(n,d)≤cdn−1/2d⋅2nb(n,d) \leq c_d n^{-1/2^d} \cdot 2^n where cd=10d2−21−ddd−2−dc_d= 10^d 2^{-2^{1-d}}d^{d-2^{-d}}. In this paper, we use the Lubell function as a new measurement for large families instead of cardinality. The Lubell value of a family of sets \F with \F\subseteq \tsupn is defined by h_n(\F):=\sum_{F\in \F}1/{{n\choose |F|}}. We prove the following Tur\'an type theorem. If \F\subseteq 2^{[n]} contains no dd-dimensional Boolean algebra, then h_n(\F)\leq 2(n+1)^{1-2^{1-d}} for sufficiently large nn. This results implies b(n,d)≤Cn−1/2d⋅2nb(n,d) \leq C n^{-1/2^d} \cdot 2^n, where CC is an absolute constant independent of nn and dd. As a consequence, we improve several Ramsey-type bounds on Boolean algebras. We also prove a canonical Ramsey theorem for Boolean algebras.Comment: 10 page

    Rainbow Ramsey problems for the Boolean lattice

    Get PDF
    We address the following rainbow Ramsey problem: For posets P,QP,Q what is the smallest number nn such that any coloring of the elements of the Boolean lattice BnB_n either admits a monochromatic copy of PP or a rainbow copy of QQ. We consider both weak and strong (non-induced and induced) versions of this problem. We also investigate related problems on (partial) kk-colorings of BnB_n that do not admit rainbow antichains of size kk
    • …
    corecore